Forge User and Developer Manual

for version 0.4.1

Jonas Bernoulli

Copyright (C) 2018-2024 Jonas Bernoulli <emacs.forge@jonas.bernoulli.dev>
You can redistribute this document and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation,
either version 3 of the License, or (at your option) any later version.

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

Table of Contents

1 Introduction........... 1
2 Imitial Setup 2

2.1 Setup for Github.com........ 2

2.2 Setup for Another Github Instance.............................. 3

2.3 Setup for Gitlab.com 4

2.4 Setup for Another Gitlab Instance 5

2.5 Setup a Partially Supported Host, 7
3 Initial Pull...... L. 9
4 Getting Started ... 10
5 Listsand Menus................................ 11
6 Visiting Topics 15
7 Creating Topics and Posts..................... 16
8 Editing Topics................, 17
9 Pulling........ ... 18
10 Branching 19
11 Miscellaneous Commands.................... 21
12 Miscellaneous Options........................ 23

Appendix A How Forge Detection Works 24

Appendix B Supported Forges and Hosts...... 26
B.1 Supported Forgeso 26
B.1.1 Github. ... 26
B.1.1.1 Github Caveatsc i .. 26
B.1.1.2 Github Hosts. ... 26
B.1.2 Gitlab ... 26
B.1.2.1 Gitlab Caveats ... 26
B.1.22 Gitlab Hosts ... 26
B.2 Partially Supported Forges.............ooiiiiiiiiiii 27
B.2.1 Gitea https://giteaio i 27
B.2.1.1 Gitea Hosts ..o 27
B.2.2 Gogs https://g0gS00 « v vvvuii 27
B.2.21 Gogs Hosts. ... 27
B.2.3 Bitbucket https://bitbucket.org 27
B.2.3.1 Bitbucket Caveats................oiiiiiiiiii .. 27
B.2.3.2 Bitbucket Hosts........... . i 27
B.3 Supported Semi-Forges............coiiiiiiii i 27
B.3.1 Gitweb https://git-scm.com/docs/gitweb 27
B.3.1.1 Gitweb Caveats ...t 28
B.3.2 Cgit https://git.zx2c4.com/cgit/about.................... 28
B.3.2.1 Cgit Caveatsouvvtiiiiii i 28
B.3.22 Cgit Hosts .. .iii 28

B.3.3 Stgit
https://codemadness.org/git/stagit/file/ README.html 28
B.3.3.1 Stgit Caveats. ...t 28
B.3.3.2 Stgit Hosts.o 28
B.3.4 Srht https://meta.sr.ht........... ... 28
B.3.4.1 Srht Caveats.........c.ooiiiiiiii i 28
B.3.4.2 Srht Hosts ..oovvi 28
Appendix C FAQ..................... 29

C.1 error in process filter: HTTP Error: 502, "Bad gateway".. 29

Appendix D Keystroke Index 30
Appendix E Function and Command Index.... 31

Appendix F Variable Index 32

ii

1 Introduction

Forge allows you to work with Git forges, currently Github and Gitlab, from the comfort
of Magit and Emacs.

Forge fetches issues, pull-requests and other data using the forge’s API and stores the
retrieved information in a local database. Additionally it fetches pull-request references
using Git.

2 Initial Setup

Please first do the common setup below and then carefully follow the instructions for your
forge instance. Once you have completed the setup, you can start tracking repositories (see
Chapter 3 [Initial Pull], page 9).

If you run into difficulties during setup or the initial pull, then please also see Appendix A
[How Forge Detection Works|, page 24, and Section “Getting Started” in ghub.

Common Setup
Loading Magit doesn’t cause Forge to be loaded automatically. Adding something like this
to your init file takes care of that:
(with-eval-after-load ’magit
(require ’forge))
Or if you use use-package:
(use-package forge
:after magit)

By default Forge adds some bindings to Magit keymaps and menus, and some sections
to Magit buffers. If you would like to prevent that, you have to set forge-add-default-
bindings and/or forge-add-default-sections to nil, before magit (not just forge) is
loaded.

2.1 Setup for Github.com

Set your Username
First inform Forge about your https://github.com username:
git config --global github.user USERNAME

If you need to identify as another user in a particular repository, then you have to set
that variable locally:

cd /path/to/repo
git config --local github.user USERNAME

Create and Store an Access Token

Visit https://github.com/settings/tokens in a browser to generate a new "classic" to-
ken using the repo, user and read:org scopes. Do not close the browser window just yet,
because the token will only be shown once.

The built-in Auth-Source (auth) package is used to store the token generated in the
previous step. The auth-sources variable controls how and where Auth-Source keeps its
secrets. The default value is a list of three files: ("~/.authinfo" "~/.authinfo.gpg"
"~/.netrc"), but that can lead to confusing behavior, so you should make sure that only
one of these files exists, and then you should also adjust the value of the variable to only
ever use that file, for example:

(setq auth-sources ’("~/.authinfo"))

https://github.com
https://github.com/settings/tokens

Chapter 2: Initial Setup 3

In ~/.authinfo secrets are stored in plain text. If you don’t want that, then you should
use the encrypted ~/.authinfo.gpg instead:

(setq auth-sources ’(""/.authinfo.gpg"))

Make sure you put one of these forms in your init file and to evaluate it in the current
Emacs instance as well, by placing the cursor after the final closing parenthesis and typing
C-x C-e (eval-last-sexp).

Next add a line like the following to the chosen file:

machine api.github.com login USERNAME forge password TOKEN
e The value of machine must be api.github.com. Variations of this won’t work.

e USERNAME must be the same as the value used for the github.user Git variable
above. You must append “forge to that, without any space in between.

e TOKEN is the token you generated earlier.

Finish by typing M-x auth-source-forget-all-cached RET. If you don’t do this, then
Auth-Source may fail to look up the token.

2.2 Setup for Another Github Instance

Before you setup a Github instance that is not https://github.com, please set that up
first. The setup for https://github.com is easier and if that works, but the setup for the
other Github instance fails, then we can tentatively narrow the issue down to the parts that
differ between https://github.com and other instances.

Tell Forge about the Instance

While Forge knows about https://github.com, it does not know about your other Github
instances. Forge instances are configured using the option forge-alist (also see its doc-
string). The entry for https://github.com in that variable looks like this:

("github.com" ; GITHOST
"api.github.com" ; APTIHOST

"github.com" ; WEBHOST and INSTANCE-ID
forge-github-repository) ; CLASS

You have to add an entry for your instance. For example, assuming you company uses
https://example.com, this might be correct:

(push ’ ("example.com" ; GITHOST
"api.example.com" ; APIHOST
"example.com" ; WEBHOST and INSTANCE-ID
forge-github-repository) ; CLASS

forge-alist)

Your company may use hostnames that follow a different format. You should be able
to easily determine and verify GITHOST and WEBHOST, but determining APIHOST
is more difficult; you might have to ask a coworker. APIHOST could be something like
api.example.com, but it could also be something like example.com/api.

If the REST API’s end point is /v3 and the GraphQL API’s end point is /graphql,
then use something like example.com/v3 as APIHOST. This is a historic accident. See
https://github.com/magit/forge/issues/174.

We will use INSTANCE-ID (aka WEBHOST) and APIHOST below.

https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://example.com
https://github.com/magit/forge/issues/174

Chapter 2: Initial Setup 4

Set your Username

Inform Forge about your username for the Github instance in question:
git config --global github.INSTANCE-ID.user USERNAME
So if INSTANCE-ID is example.com and USERNAME is tarsius then use:
git config --global github.example.com.user tarsius

Create and Store an Access Token

Visit your forge in a browser. Follow a link to "Settings", from there to "Developer settings",
from there to "Personal access tokens", and finally to "Tokens (classic)". On that page
generate a new token using the repo, user and read:org scopes. Do not close the browser
window just yet, because the token will only be shown once.

The built-in Auth-Source (auth) package is used to store the token generated in the
previous step. The auth-sources variable controls how and where Auth-Source keeps its
secrets. The default value is a list of three files: ("~/.authinfo" "~/.authinfo.gpg"
"~/.netrc"), but that can lead to confusing behavior, so you should make sure that only
one of these files exists, and then you should also adjust the value of the variable to only
ever use that file, for example:

(setq auth-sources ’("”/.authinfo"))

In ~/.authinfo secrets are stored in plain text. If you don’t want that, then you should
use the encrypted ~/.authinfo.gpg instead:

(setq auth-sources ’("”/.authinfo.gpg"))

Make sure you put one of these forms in your init file and to evaluate it in the current
FEmacs instance as well, by placing the cursor after the final closing parenthesis and typing
C-x C-e (eval-last-sexp).

Next add a line like the following to the chosen file:

machine APIHOST login USERNAME"forge password TOKEN

e APIHOST must be the same as the second element of the entry we added to
forge-alist. In the above example that would be api.example.com. Do not instead

use GITHOST or INSTANCE-ID (aka WEBHOST).

e USERNAME must be the same username you used above as the value of the Git
variable. You must append “forge to that, without any space in between.

e TOKEN is the token you generated earlier.

Finish by typing M-x auth-source-forget-all-cached RET. If you don’t do this, then
Auth-Source may fail to look up the token.

2.3 Setup for Gitlab.com

Set your Username

First inform Forge about your https://gitlab.com username:
git config --global gitlab.user USERNAME

If you need to identify as another user in a particular repository, then you have to set
that variable locally:

cd /path/to/repo

https://gitlab.com

Chapter 2: Initial Setup 5

git config --local gitlab.user USERNAME

Create and Store an Access Token

Visit https://gitlab.com/-/profile/personal_access_tokens in a browser to gener-
ate a new token using the api, read_api and read_user scopes. Do not close the browser
window just yet, because the token will only be shown once.

The built-in Auth-Source (auth) package is used to store the token generated in the
previous step. The auth-sources variable controls how and where Auth-Source keeps its
secrets. The default value is a list of three files: ("~/.authinfo" "~/.authinfo.gpg"
"~/.netrc"), but that can lead to confusing behavior, so you should make sure that only
one of these files exists, and then you should also adjust the value of the variable to only
ever use that file, for example:

(setq auth-sources ’("~/.authinfo"))

In ~/.authinfo secrets are stored in plain text. If you don’t want that, then you should
use the encrypted ~/.authinfo.gpg instead:

(setq auth-sources ’("~/.authinfo.gpg"))

Make sure you put one of these forms in your init file and to evaluate it in the current
Emacs instance as well, by placing the cursor after the final closing parenthesis and typing
C-x C-e (eval-last-sexp).

Next add a line like the following to the chosen file:

machine gitlab.com/api/v4 login USERNAME forge password TOKEN
e The value of machine must be gitlab.com/api/v4. Variations of this won’t work.
e USERNAME must be the same as the value used for the gitlab.user Git variable
above. You must append “forge to that, without any space in between.

e TOKEN is the token you generated earlier.

Finish by typing M-x auth-source-forget-all-cached RET. If you don’t do this, then
Auth-Source may fail to look up the token.

2.4 Setup for Another Gitlab Instance

Before you setup a Gitlab instance that is not https://gitlab.com, please set that up
first. The setup for https://gitlab.con is easier and if that works, but the setup for the
other Gitlab instance fails, then we can tentatively narrow the issue down to the parts that
differ between https://gitlab.com and other instances.

Tell Forge about the Instance

While Forge knows about https://gitlab.com (and a few other well-known instances, see
its value) it has to be taught about other Gitlab instances. Forge instances are configured
using the option forge-alist (also see its docstring). The entry for https://gitlab.com
in that variable looks like this:

("gitlab.com" ; GITHOST
"gitlab.com/api/v4" ; APTHOST
"gitlab.com" ; WEBHOST and INSTANCE-ID

forge-gitlab-repository) ; CLASS

https://gitlab.com/-/profile/personal_access_tokens
https://gitlab.com
https://gitlab.com
https://gitlab.com
https://gitlab.com
https://gitlab.com

Chapter 2: Initial Setup 6

For historic reasons, APIHOST actually has to be a host followed by a path.

You have to add an entry for your instance. For example, assuming you
company/organisation uses https://example.com, this might be correct:
(push ’ ("example.com" ; GITHOST
"example.com/api/v4" ; APTHOST
"example.com" ; WEBHOST and INSTANCE-ID
forge-gitlab-repository) ; CLASS

forge-alist)

Your company may use hostnames that follow a different format. You should be able
to easily determine and verify GITHOST and WEBHOST, but determining APTHOST is
more difficult; you might have to ask a colleague.

We will use INSTANCE-ID (aka WEBHOST) and APTHOST below.

Set your Username
Inform Forge about your username for the Gitlab instance in question:
git config --global gitlab.INSTANCE-ID.user USERNAME
So if INSTANCE-ID is example.com and USERNAME is tarsius then use:

git config --global gitlab.example.com.user tarsius

Create and Store an Access Token

Visit your forge in a browser. Follow a link to "Preferences" and from there to "Access
Tokens". On that page generate a new "Personal access token" using the api, read_api
and read_user scopes. Do not close the browser window just yet, because the token will
only be shown once.

The built-in Auth-Source (auth) package is used to store the token generated in the
previous step. The auth-sources variable controls how and where Auth-Source keeps its
secrets. The default value is a list of three files: ("~/.authinfo" "~/.authinfo.gpg"
"~/.netrc"), but that can lead to confusing behavior, so you should make sure that only
one of these files exists, and then you should also adjust the value of the variable to only
ever use that file, for example:

(setq auth-sources ’(""/.authinfo"))

In ~/.authinfo secrets are stored in plain text. If you don’t want that, then you should
use the encrypted ~/.authinfo.gpg instead:

(setq auth-sources ’("~/.authinfo.gpg"))

Make sure you put one of these forms in your init file and to evaluate it in the current
Emacs instance as well, by placing the cursor after the final closing parenthesis and typing
C-x C-e (eval-last-sexp).

Next add a line like the following to the chosen file:

machine APTHOST login USERNAME " forge password TOKEN

e APIHOST must be the same as the second element of the entry we added to
forge-alist. In the above example that would be example.com/api/v4. Do not
instead use GITHOST or INSTANCE-ID (aka WEBHOST).

https://example.com

Chapter 2: Initial Setup 7

e USERNAME must be the same username you used above as the value of the Git
variable. You must append “forge to that, without any space in between.

e TOKEN is the token you generated earlier.

Finish by typing M-x auth-source-forget-all-cached RET. If you don’t do this, then
Auth-Source may fail to look up the token.

2.5 Setup a Partially Supported Host

Forge currently only supports the Github and Gitlab APIs.

It does however partially support a few additional forge types (see Section B.2 [Partially
Supported Forges|, page 27) and other lighter weight software used to host Git repositories,
which also provide a web interfaces (see Section B.3 [Supported Semi-Forges|, page 27).
Forge doesn’t use the APIs of such forges, but registring the host and adding repositories
to the local database at least enables the use of commands such as forge-browse.

Tell Forge about the Instance

A few hosts, which use partially supported forge types, are available out-of-the-box, because
they have an entry in the default value of option forge-alist (also see its docstring). For
example, the entry for https://github.com in that variable looks like this:

("codeberg.org" ; GITHOST
"codeberg.org/api/v1i" ; APTHOST

"codeberg.org" ; WEBHOST and INSTANCE-ID
forge-gitea-repository) ; CLASS

To be able to add repositories from a, so far, unknown forge instance to your local data-
base, you have to add an entry for that instance to forge-alist. For example, assuming
you use another Gitea instance, hosted at https://example.com, this might be correct:

(push ’ ("example.com" ; GITHOST
"example.com/api/v1" ; APIHOST
"example.com" ; WEBHOST and INSTANCE-ID
forge-gitea-repository) ; CLASS

forge-alist)

Look at forge-alist entries of other hosts using the same forge type as the instance
you are configuring, to see what format might be appropriate. You should be able to
easily determine and verify GITHOST and WEBHOST, but determining APIHOST is
more difficult; you might have to ask a colleague. APIHOST could be something like
example.com/api/vi, but it could also be something like api.example.com.

Add Support for Additional Forge Types

For each fully or partially supported forge type, Forge defines at least a class. The following
example is taken from forge-semi.el:
(defclass forge-cgit-repository (forge-noapi-repository)
((commit-url-format :initform "https://%h/%p.git/commit/?id=%r")
(branch-url-format :initform "https://%h/%p.git/log/7h=Vr")
(remote-url-format :initform "https://%h/%p.git/about"))
"Cgit from https://git.zx2c4.com/cgit/about.

https://github.com
https://example.com

Chapter 2: Initial Setup 8

Different hosts use different url schemata, so we need multiple
classes. See their definitions in \"forge-semi.el\".")

Once you add a host using that class to forge-alist and then a repository from that
host to the local database, you will be able to use commands such as forge-browse-branch
(but not much more).

If you want to add a repository from another host, which happens to use another software
or another URL schemata, then you might have to define an additional class first. See
forge-semi.el for simple examples and grep for defclass forge-.*-repository for more
complex ones.

3 Initial Pull

To start using Forge in a certain repository, visit the Magit status buffer for that repository
and type N / a (forge-add-repository). You are given a choice to pull all topics, all topics
that were updated after a certain date, or only individual topics.

Beside adding the repository to the database, this also adds a new value
to the Git variable remote.<remote>.fetch, which causes all pull-request refs
(+refs/pull/*/head:refs/pullreqs/* for Github) to be fetched by Git.

Note that it is possible to use the same command to add any repository from a supported
forge to the database, without cloning the Git repository first.

The initial fetch can take a while but most of the work is done asynchronously. Storing
the information in the database is done synchronously though, so there can be a noticeable
hang at the end. Subsequent fetches are much faster.

Fetching issues from Github is much faster than fetching from other forges, because
making a handful of GraphQL requests, is much faster than making hundreds of REST
requests.

10

4 Getting Started

Much like Git stores information in a local repository and does not require a constant
internet connection, Forge retrieves additional information using a forge’s API and stores
that in a local database.

Forge’s equivalent of git clone is forge-add-repository, which has to be run, before
most of Forges features become available in the local clone of a Git repository.

N / a (forge-add-repository)
This command guides the user through the process of adding a repository to
the local database.

Note that it is possible to add a repository to the local database, without pulling
all the data, which is useful if you just want to create a single issue or pull-
request in a repository, but are not interested in existing topics, e.g., because
you do not regularly contribute to that repository.

Also note that you can add a repository to the local database, even if no local
Git clone exists.

Like with Git, you have to explicitly pull remote changes, at your leisure, using
forge-pull.

f n (forge-pull)
Nff This command uses a forge’s API to fetch topics and other information about
the current repository, and stores the fetched information in the database.

If the current repository isn’t being tracked in the local database yet, then this
command pivots to behave like forge-add-repository.

Forge adds two additional sections to Magit’s status buffer, which list open and/or
pending issues and pull-requests. Typing RET, while the cursor is on a topic section, shows
more information about that topic in a separate buffer. Typing RET on a topic list section,
shows that list in a separate buffer, where you can apply different filters.

The other main entry point to the functionality provided by Forge is the forge-dispatch
menu.

N (forge-dispatch)
This prefix command is available in all Magit buffers and provides access to most
of the available Forge commands. See the following sections for information
about the available commands.

11

5 Lists and Menus

Topics are listed in two sections in Magit’s status buffer, but can also be listed in dedicated
buffers. Likewise individual topics can be visited in separate buffers. In both cases this can
be done by placing the cursor on the respective section in the status buffer and typing RET,
or by invoking the appropriate command from Forge’s main menu, on N (forge-dispatch).

List commands and corresponding menu commands exist for topics, notifications and
repositories, but there isn’t always an exclusive mapping from menu to buffer. The main
menu (forge-dispatch), the configuration menu (forge-configure), the menu which con-
trols the current topic or the topic at point (forge-topic-menu), and the menu which con-
trols the topics listed in the current buffer (forge-topics-menu), are useful in more than
one major mode.

All of these menus feature bindings to directly switch to the other appropriate menus.
So it is enough to remember that N always brings up the dispatch menu; you can always
navigate to another menu from there.

C-c C-c brings up the most appropriate menu for the current buffer. In Magit’s status
buffer the most appropriate menu is Magit’s own dispatch menu (magit-dispatch), so here
the quickest way to invoke Forge’s dispatch menu is N. Even in Magit’s status buffer, when
the cursor is an individual topic or on a topic list section, C-c C-c opens the respective
menu (forge-topics-menu or forge-topic-menu).

The following sections describe most of the available menu and list commands. For
forge-topic-menu, see Chapter 8 [Editing Topics|, page 17.

Dispatch and configuration menus

N (forge-dispatch)
This prefix menu command is available in all Magit buffers and provides ac-
cess to most of the available Forge commands. See the following sections for
information about the available commands.

Nm c (forge-configure)
This command displays a menu used to configure the current repository and
some global settings as well.

Topic menu and list commands

Nm f (forge-topics-menu)

C-c C-c [in topics list buffer/section]
This command displays a menu used to control the list of topics displayed in
the current buffer.
Note that this command can not only be used in buffers dedicated to listing
topics, but also in Magit’s status buffer.

N1t (forge-list-topics)
This command lists the current repository’s issues in a separate buffer. If the
list buffer already exists, this command only ensures that all types of topics are
listed. If any other filters are in effect, they are left intact. TODO fix preserving
type

Chapter 5: Lists and Menus 12

RET [on "Issues" status section] (forge-list-issues)
This command lists the current repository’s issues in a separate buffer. If the
list buffer already exists, this command limits the list to issues. If any other
filters are in effect, they are left intact.

RET [on "Pull requests" status section] (forge-list-pullreqs)
This command lists the current repository’s pull-requests in a separate buffer.
If the list buffer already exists, this command limits the list to pull-requests. If
any other filters are in effect, they are left intact.

N1 g (forge-list-global-topics)
This command lists topics across all tracked repository. If the list buffer already
exists, filters except for the type filter are left in effect.

forge-list-global-issues [Command]
This command lists issues across all tracked repository. If the list buffer already
exists, filters except for the type filter are left in effect.

forge-list-global-pullreqgs [Command]|
This command lists pull-requests across all tracked repository. If the list buffer already
exists, filters except for the type filter are in effect.

Notification menu and list commands

Nmn (forge-notifications-menu)
C-c C-c This command displays a menu used to control the list of notifications displayed
in the current buffer.

N1n (forge-list-notifications)
This command lists all notifications for all forges in a separate buffer.

Repository menu and list commands

Nmr (forge-repositories-menu)
C-c C-c This command displays a menu used to control the list of repositories displayed
in the current buffer.

N1 r (forge-list-repositories)
This command lists all known repositories in a separate buffer. Here "known"
means that an entry exists in the local database.

RET [on repository] (forge-visit-this-repository)
This commands visits the repository at point in a separate buffer.

o [in forge-repositories-menu] (forge-list-owned-repositories)
This command lists all known repositories that belong to the user in a separate
buffer. Here "known" means that an entry exists in the local database. Only
Github is supported for now.

The below options controls which repositories are considered to be owned by the user.
They are additionally used by forge-fork.

Chapter 5: Lists and Menus 13

forge-owned-accounts [User Option]
This is an alist of accounts that are owned by you. This should include your username
as well as any organization that you own.
Each element has the form (ACCOUNT . PLIST). The following properties are currently
being used:
e remote-name The default name suggested by forge-fork for a fork created
within this account. If unspecified, then the name of the account is used.

Example: (("tarsius") ("emacsmirror" remote-name "mirror")).

forge-owned-ignored [User Option]
This is a list of repository names that are considered to not be owned by you, even
though they would have been considered to be owned by you based on forge-owned-
accounts.

Exiting menus and lists

To exit a menu, type C-g. If the menu was invoked from another menu and that menu is
useful in the current buffer, then that menu becomes active again. If that happens and you
actually want to quit all menus, then just type C-g again. You can also directly exit all
menus by using C-q, instead of C-g.

Type g to quit not only the menu, but also the list or topic detail buffer. That binding
is also available when no menu is active, in which case it will simply quit the buffer. When
invoked from a menu, then this binding may return to another list buffer, in which case
some menu may also remain active.

Default topic filters

forge-status-buffer-default-topic-filters [User Option]
This option specifies the filters initially used to limit topics listed in topic list buffers.

forge-status-buffer-default-topic-filters [User Option]
This option specifies the filters initially used to limit topics listed in Magit status
buffers.

Also see [Topic sections in Magit status buffers], page 13.

Topic sections in Magit status buffers

Forge arranges for certain issues and pull-requests to be list in Magit status buffers, by
adding the following functions to magit-status-sections-hook.

Which topics are listed initially is customizable using option forge-status-buffer-
default-topic-filters and can be changed temporarily for the current buffer, using N m
f (‘forge-topics-menu’).

forge-insert-issues [Function]
This function inserts a list of issues, by default a list of "active" issues.

forge-insert-pullregs [Function]
This function inserts a list of pull-requests, by default a list of "active" pull-requests.

Chapter 5: Lists and Menus 14

Forge used to provide additional functions to insert hard-coded topic subsets, but they
were removed in favor of the more flexible approach described above. If you miss the
removed sections, you can use the new forge-insert-topics helper function to define
your own section inserter functions. See its docstring for more information.

If you don’t want any topic list sections to be displayed in Magit status buffers, set
forge-add-default-sections to nil before magit is loaded.

15

6 Visiting Topics

The commands, accessible from forge-topic-menu (on C-return), act on the topic at
point; so this menu is useful in buffers dedicated to listing topics and notifications (which
correspond to topics), but also in the status buffer (which also lists topics). In buffers
dedicated to showing details about a single topic, these commands act on that topic; so this
menu can be used there too.

To switch to this menu from another menu use m s. If the cursor is on a topic or the
current buffer visits a topic.

To display details about a topic in a separate buffer and at the same time display the
topic menu, invoke forge-topic-menu with a prefix argument, i.e., C-u RET.

RET [on topic] (forge-visit-this-topic)
This commands visits the topic at point in a separate buffer. When invoked
with a prefix argument then it not only visits the topic in a separate buffer, it
at the same time displays

Nv t (forge-visit-topic)
Nv i (forge-visit-issue)
N v p (forge-visit-pullreq)
These commands read a topic, issue or pull-request and visit it in a separate

buffer.

C-c C-o (forge-browse)

o [on topic in topic list] (forge-browse-this-topic)

o [on repository in repository list] (forge-browse-this-repository)
These commands visit the topic, issue(s), pull-request(s), post, branch, commit,
remote or repository at point in a browser.

forge-browse-commit [Command]|
forge-browse-branch [Command]
forge-browse-repository [Command]|

Nb t (forge-browse-topic)

N b i (forge-browse-issue)

N b p (forge-browse-pullreq)

N b r (forge-browse-remote)

N b I (forge-browse-issues)

N b P (forge-browse-pullreqs)
These commands read a topic, issue(s), pull-request(s), branch, commit, remote
or repository, and open it in a browser.

16

7 Creating Topics and Posts

We call both issues and pull-requests "topics". The contributions to the conversation are
called "posts". The initial topic description is also called a post.

Creating a new topic or post and editing an existing post work similarly to now creating
a new commit or editing the message of an existing commit works in Magit. In both cases
the message has to be written in a separate buffer and then the process has to be finished or
canceled using a separate command. The following commands drop you into such a buffer.

N c p (forge-create-pullreq)
C-c C-n [on "Pull requests" section]
This command creates a new pull-request for the current repository.

N c i (forge-create-issue)
C-c C-n [on "Issues" section]
This command creates a new issue for the current repository.

C-c C-n (forge-create-post)
C-c C-r This command creates a new post on an existing topic. It is only available in
buffers that visit an existing topic.

If the region is active and marks part of an existing post, then that part of the
post is quoted. When a prefix argument is used, then the complete post, which
point is currently on, is quoted.

The following commands are available in buffers used to edit posts:

C-c C-c (forge-post-submit)
This command submits the post that is being edited in the current buffer.

C-c C-k (forge-post-cancel)
This command cancels the post that is being edited in the current buffer.

C-c C-e (forge-post-dispatch)
This prefix command features the above two commands as suffixes, and when
creating a pull-request also the following command. More suffix commands will
likely be added in the future.

C-c C-e d (forge-post-toggle-draft)
This command toggles whether the pull-request being created is a draft.

17

8 Editing Topics

Many details about a topic can be changed from the buffer that visits that topic, but also
from topic lists, if the cursor is placed on the topic to be edited. However, to edit the posts
on a topic, the topic has to be visited in its own buffer.

C-c C-e [on a post section] (forge-edit-post)
This command visits an existing post in a separate buffer, it can only be invoked
from a topic buffer, when the cursor is on the post to be edited.

Editing an existing post is similar to creating a new post, as described in the
previous section.

C-c C-k [on a post section] (forge-delete-comment)
This command deletes the post the cursor is on. The initial message that was
written when the topic was created, cannot be deleted, only replies to that.

Nm s (forge-topic-menu)

C—<return> [on a topic section]
This command displays a menu used to edit details about the topic the cursor
is on or that is being visited in the current buffer. E.g., it can be used to change
the status of the topic or to apply labels to it. Additionally it features a few
commands that act on that topic.

Details about a topic, such as its status and labels, can alternatively be edited by visiting
the topic in its own buffer, navigating to the header that displays the detail and then typing
C-c C-e. This older approach is still available, but it is usually much faster to use the menu.

18

9 Pulling

The commands that fetch forge data are available the Forge’s main menu (forge-dispatch
on N) and from the same menu (magit-fetch on f) that is used to fetch Git data. If
magit-pull-or-fetch is non-nil, then they are also available from the magit-pull menu
(on F).

With Git you have to explicitly pull Git data to make it available in the local repository.
Forge works the same; you have to explicitly pull to pull data using the forge’s API and
storing in the local database. This is less disruptive, more reliable, familiar and easier to
understand than if Forge pulled by itself at random intervals. It might however mean that
you occasionally invoke a command expecting the most recent data to be available and then
have to abort and pull first. The same can happen with Git, e.g., you might attempt to
merge a branch that you know exists but haven’t actually pulled yet.

f n (forge-pull)
Nff This command uses a forge’s API to fetch topics and other information about
the current repository and stores the fetched information in the database.

If the current repository is still untracked locally, or the current repository can-
not be determined, this command instead behaves like forge-add-repository,
i.e., it adds the repository to the database and then performs the initial pull.

f N (forge-pull-notifications)
Nfn This command uses a forge’s API to fetch all notifications from that forge,
including, but not limited to, the notifications for the current repository.

Fetching notifications fetches associated topics even for repositories that you
have not yet explicitly added to the local database.

N f t (forge-pull-topic)
This command uses a forge’s API to fetch a single pull-request and stores it in
the database. This is useful if you chose to not fetch all topics when you added
the repository using forge-add-repository.

19

10 Branching

Forge provides commands for creating and checking out a new branch or work tree from
a pull-request. These commands are available from the same transient prefix commands
as the suffix commands, used to create and check out branches and work trees in a more
generic fashion (magit-branch on b and magit-worktree on %).

b F (forge-branch-pullreq)
This command creates and configures a new branch from a pull-request, creating
and configuring a new remote if necessary.

The name of the local branch is the same as the name of the remote branch
that you are being asked to merge, unless the contributor could not be bothered
to properly name the branch before opening the pull-request. The most likely
such case is when you are being asked to merge something like "fork/master"
into "origin/master". In such cases the local branch will be named "pr-N",
where N is the pull-request number.

These variables are always set by this command:
e branch.<name>.pullRequest is set to the pull-request number.

e branch.<name>.pullRequestRemote is set to the remote on which the
pull-request branch is located.

e branch.<name>.pushRemote is set to the same remote as
branch.<name>.pullRequestRemote if that is possible, otherwise
it is set to the upstream remote.

e branch.<name>.description is set to the pull-request title.

e branch.<name>.rebase is set to true because there should be no merge
commits among the commits in a pull-request.

This command also configures the upstream and the push-remote of the local
branch that it creates.

The branch against which the pull-request was opened is always used as the
upstream. This makes it easy to see what commits you are being asked to
merge in the section titled something like "Unmerged into origin/master".

Like for other commands that create a branch, it depends on the option
magit-branch-prefer-remote-upstream whether the remote branch itself or
the respective local branch is used as the upstream, so this section may also
be titled, e.g., "Unmerged into master".

When necessary and possible, the remote pull-request branch is configured to
be used as the push-target. This makes it easy to see what further changes
the contributor has made since you last reviewed their changes in the section
titled something like "Unpulled from origin/new-feature" or "Unpulled from
fork /new-feature".

e If the pull-request branch is located in the upstream repository, then you
probably have set remote.pushDefault to that repository. However some
users like to set that variable to their personal fork, even if they have push
access to the upstream, so branch.<name>.pushRemote is set anyway.

Chapter 10: Branching 20

e If the pull-request branch is located inside a fork, then you are usually able
to push to that branch, because Github by default allows the recipient of a
pull-request to push to the remote pull-request branch even if it is located
in a fork. The contributor has to explicitly disable this.

e If you are not allowed to push to the pull-request branch on the fork,
then a branch by the same name located in the upstream repository
is configured as the push-target.

o A—sadly rather common—special case is when the contributor didn’t
bother to use a dedicated branch for the pull-request.

The most likely such case is when you are being asked to merge some-
thing like "fork/master" into "origin/master". The special push per-
mission mentioned above is never granted for the branch that is the
repository’s default branch, and that would almost certainly be the
case in this scenario.

To enable you to easily push somewhere anyway, the local branch is
named "pr-N" (where N is the pull-request number) and the upstream
repository is used as the push-remote.

e Finally, if you are allowed to push to the pull-request branch and the
contributor had the foresight to use a dedicated branch, then the fork
is configured as the push-remote.

The push-remote is configured using branch.<name>.pushRemote, even if
the used value is identical to that of remote.pushDefault, just in case
you change the value of the latter later on. Additionally the variable
branch.<name>.pullRequestRemote is set to the remote on which the
pull-request branch is located.

b f (forge-checkout-pullreq)
This command creates and configures a new branch from a pull-request the
same way forge-branch-pullreq does. Additionally it checks out the new
branch.

Z n (forge-checkout-worktree)
This command creates and configures a new branch from a pull-request the
same way forge-branch-pullreq does. Additionally it checks out the new
branch, using a new working tree.

forge-checkout-worktree-read-directory-function [User Option]
This function is used by forge-checkout-worktree, to read the new worktree di-
rectory where it checks out the pull-request. It takes the pull-request as the only
argument and must return a directory.

When you delete a pull-request branch, which was created using one of the above three
commands, then magit-branch-delete usually offers to also delete the corresponding re-
mote. It does not offer to delete a remote if (1) the remote is the upstream remote, and/or
(2) if other branches are being fetched from the remote.

Note that you have to delete the local branch (e.g., "feature") for this to work. If you
delete the tracking branch (e.g., "fork/feature"), then the remote is never removed.

21

11 Miscellaneous Commands

N M (forge-merge)

m M [if enabled]
This command merges the current pull-request using the forge’s API. If there
is no current pull-request or with a prefix argument, then it reads a pull-request
to visit instead.

The "merge method" to be used is read from the user.

Use of this command is discouraged. Unless the remote repository is configured
to disallow that, you should instead merge locally and then push the target
branch. Forges detect that you have done that and respond by automatically
marking the pull-request as merged.

N ¢ f (forge-fork)
This command adds an additional remote to the current repository. The remote
can either point at an existing repository or one that has to be created first by
forking it to an account the user has access to.

Currently this only supports Github and Gitlab.

N - H (forge-toggle-topic-legend)
This command toggle whether to show a legend for faces used in topic menus
and lists.

N - S (forge-toggle-display-in-status-buffer)
This command toggles whether any topics are displayed in the current Magit
status buffer.

C-c C-w (forge-copy-url-at-point-as-kill)
This command copies the url for the topic, issue(s), pull-request(s), post,
branch, commit, remote or repository to the kill-ring.

This determines the url the same way as forge-browse does, but then adds it
to the kill-ring, instead of visiting it in a browser.

M b r (forge-rename-default-branch)
This command rename the default branch to a new name read from the user.

This changes the name on the upstream remotely and locally, and update the
upstream remotes of local branches accordingly.

forge-add-pullreq-refspec [Command]|
This command configures Git to fetch all pull-requests.

This is done by adding +refs/pull/*/head:refs/pullreqs/* to the value of
remote.REMOTE. fetch, where REMOTE is the upstream remote.

forge-add-user-repositories [Command]
This command reads a host and a username from the user and adds all of that user’s
repositories on that host to the local database.

This may take a while. Only Github is supported at the moment.

Chapter 11: Miscellaneous Commands 22

forge-add-organization-repositories [Command]
This command reads a host and an organization from the user and adds all the
organization’s repositories on that host to the local database.

This may take a while. Only Github is supported at the moment.

forge-remove-repository [Command]
This command reads a repository and removes it from the local database.

forge-remove-topic-locally [Command]
This command reads a topic and removes it from the local database. The topic is
not removed from the forge and, if it is later modified, then it will be added to the
database again.

Due to how the supported APIs work, it would be too expensive to automatically
remove topics from the local database that were removed from the forge. The only
purpose of this command is to allow you to manually clean up the local database.

forge-reset-database [Command]|
This command moves the current database file to the trash and creates a new empty
database.

This is useful after the database’s table schemata have changed, which will happen a
few times while the Forge functionality is still under heavy development.

23

12 Miscellaneous Options

forge-database-file [User Option]
This option specifies the file used to store the forge database.

forge-topic-repository-slug-width [User Option]
This option specifies the width of repository slugs (i.e., "OWNER/NAME").

forge-buffer-draft-p [User Option]
This option controls whether new pull-requests start out as drafts by default.

The buffer-local value of this variable is used to keep track of the draft status of the
current pull-request.

forge-repository-list-columns [User Option]
This option specifies the list of columns displayed when listing repositories.
Each element has the form (HEADER SOURCE WIDTH SORT PROPS).

HEADER is the string displayed in the header. WIDTH is the width of the column.
SOURCE is used to get the value, it has to be the name of a slot of forge-repository
or a function that takes such an object as argument. SORT is a boolean or a func-
tion used to sort by this column. Supported PROPS include :right-align and
:pad-right.

forge-limit-topic-choices [User Option]
This option controls whether to initially limit completion candidates to active topics.

forge-post-heading-format [User Option]
This option specifies the format for post headings in topic view.

The following %-sequences are supported:
e Ja The forge nickname of the author.
e ’.c The absolute creation date.
e ’C The relative creation date.

forge-post-fill-region [User Option]
This option controls whether to call fill-region before displaying forge posts.

forge-bug-reference-hooks [User Option]
This option lists the hooks to which forge-bug-reference-setup is added. It has
to be customized before forge is loaded, or it won’t take effect.

24

Appendix A How Forge Detection Works

Forge uses the Ghub package to communicate with forge APIs. For more information about
Ghub, see ghub.

Ghub does not associate a given local repository with a repository on a forge. The Forge
package itself takes care of this. In doing so it ignores the Git variable ghub.host and other
*.host variables used by Ghub. (But github.user, and other variables used to specify the
user, are honored).

Forge associates the local repository with a forge repository, by first determining which
remote is associated with the upstream repository, and then looking that up in forge-alist.

If only one remote exists, then Forge uses that unconditionally. To reduce the number
of support requests, this is even the case if the Git variable forge.remote names another,
non-existent, remote.

If several remotes exist, then a remote may be selected based on its name. Almost always
we want to fetch the data associated with the upstream repository, so that is what the logic
described here tries to achieve. The convention is to name the upstream remote "origin",
and if that convention were universally followed, then things would be trivial. However
many people name the upstream remote "upstream", which also makes sense.

Note, however, that even though a surprising number of people do just that, it
does not make any sense to use the name "origin" to refer to a fork; not even
to your own fork. A fork is a copy of the original, "copy" is an antonym for
"original", and the word "origin" is not only closely related to but is even con-
tained in the word "original". Naming a fork the "origin" is at best extremely

confusing.

copy a thing made to be similar or identical to another.

original the earliest form of something, from which copies may be made.
origin the point or place where something begins, arises, or is derived.

If several remotes exist, then the following remote names are tried in order and the first
remote thus named that exists in the repository is used.

1. The value of the Git variable forge.remote, if set. If the variable has a value but
no remote by the specified name exists, then a warning is shown, but otherwise this
conflict is ignored. This behavior is arguably odd, but due to historic and pragmatic
reasons it is the least painful path forward.

2. The remote named upstreamn, if it exists.

3. The remote named origin, if it exists.

The remote named "upstream" is preferred over the remote named "origin" because the
existence of the former strongly suggests that the latter is either not used in this repository
(in which case the order does not matter) or else it is abused as the name of a fork (in which
case "upstream" must be preferred).

forge.remote [Variable]
The value of this variable specifies the remote from which Forge fetches data. It is
usually best to leave this unspecified and to rely on the behavior described above.

Appendix A: How Forge Detection Works 25

If the remote has to be specified explicitly, then this should be done locally, for a
single repository.

Only ever set this globally, if you consistently use a certain name to refer to the
upstream repository and it isn’t one of "upstream" or "origin", and you never use
that name to refer to a repository that does not refer to the upstream repository.

N r (forge-forge.remote)
This command changes the value of the forge.remote Git variable in the cur-
rent repository.

If this variable is set, then Forge uses the remote by that name, if it exists, the same
way it may have used origin if the variable were undefined. l.e., it does not fall through
to try origin if no remote by your chosen name exists.

Once the wupstream remote has been determined, Forge looks it wup in
forge-alist, using the host part of the URL as the key. For example, the key
for git@github.com:magit/forge.git is github.com.

forge-alist [User Option]
This option defines forge hosts known to Forge.
Fach entry has the form (GITHOST APTHOST WEBHOST CLASS).
e GITHOST is the host used to access repositories on the forge using Git.

e APIHOST is the host used to access the forge’s API. For some forges the isn’t
just a host, but a host followed by the path to the API’s endpoint.

e WEBHOST is the host used to access repositories on this forge using a browser.
The IDs used to identify repositories from the forge in the local database also
derives from this value.

e CLASS is the class to be used for repositories from the forge.

Complications:
e When connecting to a Github Enterprise edition whose REST API’s end point
is "<host>/v3" and whose GraphQL API’s end point is "<host>/graphql", then
use "<host>/v3" as APIHOST. This is a historic accident. See issue #174.
¢ WEBHOST and CLASS cannot be changed once you have added one or more
repositories from a forge. Changing GITHOST and/or APTHOST may be possi-
ble, but should seldom be necessary.

26

Appendix B Supported Forges and Hosts

Currently Forge supports two forges and three more forges partially. Additionally it sup-
ports four semi-forges. Support for more forges and semi-forges can and will be added.

Both forges and semi-forges provide web interfaces for Git repositories. Forges addition-
ally support pull-requests and issues and make those and other information available using
an API.

When a forge is only partially supported, then that means that only the functionality
that does not require the API is implemented, or in other words, that the forge is only
supported as a semi-forge.

A host is a particular instance of a forge. For example the hosts https://gitlab.com
and https://salsa.debian.org are both instances of the Gitlab forge. Forge supports
some well known hosts out of the box and additional hosts can easily be supported by
adding entries to the option forge-alist (see Appendix A [How Forge Detection Works],
page 24).

For more details about the caveats mentioned below (and some others) see also Chapter 4
[Getting Started], page 10.

B.1 Supported Forges
B.1.1 Github

Forge’s support for Github can be considered the "reference implementation". Support for
other forges can lag behind a bit.

B.1.1.1 Github Caveats

e Forge uses the Github GraphQL API when possible but has to fall back to use the
REST API in many cases because the former is still rather incomplete.

e The Github GraphQL API has a hard-coded timeout on queries. The only solution
is to reduce the number of entities we query at once, which can be done by adjusting
either the forge.graphqlItemLimit git variable or the field "GQL entity limit" in a
status buffer.

e Forge depends on the updated_at field being updated when appropriate. For Github
pull-requests at least, that is not always done.

B.1.1.2 Github Hosts
e https://github.com

B.1.2 Gitlab
B.1.2.1 Gitlab Caveats

e Forge cannot provide notifications because the Gitlab API does not expose those.

B.1.2.2 Gitlab Hosts
e https://gitlab.com

https://gitlab.com
https://salsa.debian.org
https://github.com
https://gitlab.com

Appendix B: Supported Forges and Hosts 27

e https://salsa.debian.org
e https://framagit.org

B.2 Partially Supported Forges

B.2.1 Gitea https://gitea.io
This is the next forge whose API will be supported.

B.2.1.1 Gitea Hosts
e https://codeberg.org

B.2.2 Gogs https://gogs.io

Once Gitea is supported it should be fairly simple to support Gogs too, because the former
is a fork of the latter and the APIs seem to still be very similar.

B.2.2.1 Gogs Hosts
e https://code.orgmode.org

B.2.3 Bitbucket https://bitbucket.org

I don’t plan to support Bitbucket’s API any time soon, and it gets less likely that I will
every do it every time I look at it.

B.2.3.1 Bitbucket Caveats
e The API documentation is poor and initial tests indicated that the implementation is
buggy.

e Atlassian’s offering contains two very distinct implementations that are both called
"Bitbucket". Forge only supports the implementation whose only instance is available
at https://bitbucket.org, because I only have access to that.

e Unlike all other forges, Bitbucket does not expose pull-requests as references in the up-
stream repository. For that reason Forge actually treats it as a semi-forge, not as forge
whose API is not supported yet. This means that you cannot checkout pull-requests
locally. There is little hope that this will ever get fixed; the respective issue was opened
six years ago and there has been no progress since: https://bitbucket.org/site/
master/issues/5814.

B.2.3.2 Bitbucket Hosts
e https://bitbucket.org

B.3 Supported Semi-Forges

B.3.1 Gitweb https://git-scm.com/docs/gitweb

https://salsa.debian.org
https://framagit.org
https://codeberg.org
https://code.orgmode.org
https://bitbucket.org
https://bitbucket.org/site/master/issues/5814
https://bitbucket.org/site/master/issues/5814
https://bitbucket.org

Appendix B: Supported Forges and Hosts 28

B.3.1.1 Gitweb Caveats

e I could find only one public installation (https://git.savannah.gnu.org), which
gives users the choice between Gitweb and Cgit. The latter seems more popular (not
just on this site).

B.3.2 Cgit https://git.zx2c4.com/cgit/about
B.3.2.1 Cgit Caveats

e Different sites use different URL schemata and some of the bigger sites use a fork. For
this reason Forge has to provide several classes to support different variations of Cgit
and you have to look at their definitions to figure out which one is the correct one for
a particular installation.

B.3.2.2 Cgit Hosts

e https://git.savannah.gnu.org/cgit
e https://git.kernel.org
e https://repo.or.cz

B.3.3 Stgit https://codemadness.org/git/stagit/file/README.html
B.3.3.1 Stgit Caveats

e Stgit cannot show logs for branches beside "master". For that reason Forge takes users
to a page listing the branches when they request the log for a particular branch (even
for "master" whose log is just one click away from there).

B.3.3.2 Stgit Hosts
e https://git.suckless.org

B.3.4 Srht https://meta.sr.ht
B.3.4.1 Srht Caveats

e Srht cannot show logs for branches beside "master". For that reason Forge takes users
to a page listing the branches when they request the log for a particular branch (even
for "master" whose log is just one click away from there).

B.3.4.2 Srht Hosts
e https://git.sr.ht

https://git.savannah.gnu.org
https://git.savannah.gnu.org/cgit
https://git.kernel.org
https://repo.or.cz
https://git.suckless.org
https://git.sr.ht

29

Appendix C FAQ

This section lists some frequently asked questions. Please see also https://github.com/
magit/forge/wiki/FAQ for an extended list of common issues.

C.1 error in process filter: HTTP Error: 502, "Bad gateway"

This is a frequently occurring error. Adding some formatting, the full error is:

error in process filter: ghub--signal-error: HTTP Error: 502,
"Bad gateway", "/graphql",
((data . "null")

(errors ((message . "Something went wrong while executing your query.
This may be the result of a timeout, or it could be a GitHub bug.
Please include ‘CC2C:4FEA:A1771C1:CBF40CE:5C33F7E5¢
when reporting this issue."))))

This indicates that something went wrong within Github’s network. Unfortunately the
reason given is rather vague, but I believe this usually happens when there are topics with
one or two magnitudes more posts than usual, which can cause GraphQL responses to
become huge.

This can be countered in the affected repository by setting the Git variable
forge.graphqlItemLimit:
git config --local forge.graphqlItemLimit 20

The default is specified using the ghub-graphql-items-per-request, which defaults to
50 (down from Github’s default and maximum of 100).

Fetching less items per request results in more requests, which slows down the process,
which is why the default should not be too small, but for some repositories a more aggressive
limit is needed.

https://github.com/magit/forge/wiki/FAQ
https://github.com/magit/forge/wiki/FAQ

30

Appendix D Keystroke Index

B N € oot 21
D E o 20 Ned.oo 16
D F 19 Nep. 16
N f 10, 18
N m . 18
C N b o 18
C-<return> [on a topic section] 17 N L g 12
CmC CmC ettt 12, 16 0 12
C-c C-c [in topics list buffer/section]..... 11 N Lo o 12
C=C Cm@ ittt 16 N oL b 11
C-c C-e [on a post section] 17 U Y 11
CcCed........oooiiiiiii 6 Nmf .o 11
C=C Rt e 16 NI D oo 12
C-c C-k [on a post section] 17 0 I 12
C=C Gl oot 16 Nms . 17
C-c C-n [on "Issues" section]................ 16 N M 21
C-c C-n [on "Pull requests" section] 16 FMeoooo
Cec Ceo. . 15 N o e e 25
Cmc CmT oo 16 Novod o 15
CmC CoW oo oo 21 I« 15
N oV o e 15
F
i PPN 10, 18
N 18 O
o [in forge-repositories-menul 12
M o [on repository in repository list]........ 15
o [on topic in topic list].................... 15
mM [if enabled] i, 21
M b L 21
N R
N e 10, 11 RET [on "Issues" status section] 12
e 21 RET [on "Pull requests" status section]..... 12
N o= S e 21 RET [on repository]ovviieenannnn... 12
N/ a 10 RET [0n t0Pic] «ovveeeii e 15
N oD A o 15
N oD I oo 15
N oD D e 15
N oD P o 15
N oD T o 15 Z

31

Appendix E Function and Command Index

forge-add-organization-repositories....... 22
forge-add-pullreq-refspec................... 21
forge-add-repository 10
forge-add-user-repositories................ 21
forge-branch-pullreqcovuun.. 19
forge-browse.........ol 15
forge-browse-branch.................... 15
forge-browse-commit............o 15
forge-browse-issue............. 15
forge-browse-issues................. 15
forge-browse-pullreqcovvvuini.. 15
forge-browse-pullreqsoounnn.. 15
forge-browse-remote............coiiiiiiiiiin. 15
forge-browse-repository..................... 15
forge-browse-this-repository............... 15
forge-browse-this-topic..................... 15
forge-browse-topic.....................ll 15
forge-checkout-pullreq...................... 20
forge-checkout-worktree..................... 20
forge-configure..............ol 11
forge-copy-url-at-point-as-kill............ 21
forge-create-issue................... .. 16
forge-create-post.......................L 16
forge-create-pullreqcovviiin.. 16
forge-delete-commentoo.... 17
forge-dispatch.................... ... 10, 11
forge-edit-postl 17
forge-forge.remote............l 25
forge-fork........... ...l 21
forge-insert-issues.......................... 13
forge-insert-pullregs 13

forge-list-global-issues.................... 12

forge-list-global-pullreqgs.................. 12
forge-list-global-topics.................... 12
forge-list-issues............................ 12
forge-list-notifications.................... 12
forge-list-owned-repositories.............. 12
forge-list-pullreqs...........ccovvvvveeennnn. 12
forge-list-repositories..................... 12
forge-list-topics............ ...l 11
forge-merge........... ... il 21
forge-notifications-menu.................... 12
forge-post-cancel............................ 16
forge-post-dispatch............... 16
forge-post-submit.......................L 16
forge-post-toggle-draft..................... 16
forge-pulll 10, 18
forge-pull-notifications.................... 18
forge-pull-topic................. 18
forge-remove-repository..................... 22
forge-remove-topic-locally.................. 22
forge-rename-default-branch 21
forge-repositories-menu..................... 12
forge-reset-database 22
forge-toggle-display-in-status-buffer..... 21
forge-toggle-topic-legend................... 21
forge-topic-menu................oiiiiiiiii 17
forge-topics-menu................... ... 11
forge-visit-issue....................l 15
forge-visit-pullreq..................ooiil 15
forge-visit-this-repository................ 12
forge-visit-this-topic...................... 15
forge-visit-topic.................iil 15

32

Appendix F Variable Index

forge-alist........... ...l 25 forge-owned-ignored................. 13
forge-buffer-draft-p............. ... 23 forge-post-fill-region...................... 23
forge-bug-reference-hooks................... 23 forge-post-heading-format................... 23
forge-checkout-worktree-read- forge-repository-list-columns.............. 23
directory-function 20 forge-status-buffer-default-
forge-database-file.......................... 23 topic-filters................ ... 13
forge-limit-topic-choices................... 23 forge-topic-repository-slug-width......... 23

forge-owned-accounts 13 forge.remote............ ...l 24

	1 Introduction
	2 Initial Setup
	Setup for Github.com
	Setup for Another Github Instance
	Setup for Gitlab.com
	Setup for Another Gitlab Instance
	Setup a Partially Supported Host

	3 Initial Pull
	4 Getting Started
	5 Lists and Menus
	6 Visiting Topics
	7 Creating Topics and Posts
	8 Editing Topics
	9 Pulling
	10 Branching
	11 Miscellaneous Commands
	12 Miscellaneous Options
	A How Forge Detection Works
	B Supported Forges and Hosts
	Supported Forges
	Github
	Github Caveats
	Github Hosts

	Gitlab
	Gitlab Caveats
	Gitlab Hosts

	Partially Supported Forges
	Gitea https://gitea.io
	Gitea Hosts

	Gogs https://gogs.io
	Gogs Hosts

	Bitbucket https://bitbucket.org
	Bitbucket Caveats
	Bitbucket Hosts

	Supported Semi-Forges
	Gitweb https://git-scm.com/docs/gitweb
	Gitweb Caveats

	Cgit https://git.zx2c4.com/cgit/about
	Cgit Caveats
	Cgit Hosts

	Stgit https://codemadness.org/git/stagit/file/README.html
	Stgit Caveats
	Stgit Hosts

	Srht https://meta.sr.ht
	Srht Caveats
	Srht Hosts

	C FAQ
	error in process filter: HTTP Error: 502, "Bad gateway"

	D Keystroke Index
	E Function and Command Index
	F Variable Index

