
Magit User Manual
for version 2.2

Jonas Bernoulli

Copyright (C) 2015 Jonas Bernoulli <jonas@bernoul.li>

You can redistribute this document and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation,
either version 3 of the License, or (at your option) any later version.

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

i

Table of Contents

1 Introduction . 1

2 Installation . 3
2.1 Updating from an older release . 3
2.2 Installing from an Elpa archive . 3
2.3 Installing from the Git repository . 4
2.4 Post-installation tasks . 5

3 Getting started . 6

4 Interface concepts . 8
4.1 Modes and Buffers . 8
4.2 Automatic save . 9
4.3 Automatic refresh and revert . 9
4.4 Sections . 10

4.4.1 Section movement . 10
4.4.2 Section visibility . 11
4.4.3 Section hooks . 13
4.4.4 Section types and values . 13
4.4.5 Section options . 14

4.5 Popup buffers and prefix commands . 14
4.6 Completion and confirmation . 14
4.7 Running Git . 15

4.7.1 Viewing Git output . 15
4.7.2 Running Git manually . 16
4.7.3 Git executable . 17
4.7.4 Global Git arguments . 17

5 Inspecting . 18
5.1 Status buffer . 18

5.1.1 Status sections . 19
5.1.2 Status header sections . 21
5.1.3 Status options . 21

5.2 Logging . 22
5.2.1 Refreshing logs . 23
5.2.2 Log Buffer . 23
5.2.3 Select from log . 24
5.2.4 Reflog . 25

5.3 Diffing . 25
5.3.1 Refreshing diffs . 26
5.3.2 Diff buffer . 27
5.3.3 Diff options . 28

ii

5.3.4 Revision buffer . 29
5.4 Ediffing . 30
5.5 References buffer . 31

5.5.1 References sections . 32
5.6 Bisecting . 33
5.7 Visiting blobs . 33
5.8 Blaming . 34

6 Manipulating . 36
6.1 Repository setup . 36
6.2 Staging and unstaging . 36

6.2.1 Staging from file-visiting buffers . 37
6.3 Applying . 37
6.4 Committing . 38

6.4.1 Initiating a commit . 38
6.4.2 Editing commit messages . 39

6.5 Branching . 42
6.6 Merging . 43
6.7 Rebasing . 44

6.7.1 Editing rebase sequences . 45
6.7.2 Rebase sequence log . 46

6.8 Cherry picking . 48
6.8.1 Reverting . 48

6.9 Resetting . 49
6.10 Stashing . 50

7 Transferring . 52
7.1 Remotes . 52
7.2 Fetching . 52
7.3 Pulling . 52
7.4 Pushing . 53
7.5 Creating and sending patches . 54
7.6 Applying patches . 54

8 Miscellaneous . 55
8.1 Tagging . 55
8.2 Notes . 55
8.3 Submodules . 56
8.4 Wip modes . 57
8.5 File-buffer mode . 59

9 Customizing . 60
9.1 Per-repository configuration . 60
9.2 Essential settings . 61

9.2.1 Safety . 61
9.2.2 Performance . 62

iii

10 Plumbing . 64
10.1 Calling Git . 64

10.1.1 Getting a value from Git . 64
10.1.2 Calling Git for effect . 65

10.2 Section plumbing . 67
10.2.1 Creating sections . 68
10.2.2 Section selection . 69
10.2.3 Matching sections . 69

10.3 Refreshing buffers . 71
10.4 Conventions . 72

10.4.1 Confirmation and completion . 72
10.4.2 Theming Faces . 72

Appendix A FAQ . 75
A.1 Magit is slow . 75
A.2 I am having problems committing . 75
A.3 I am using an Emacs release older than 24.4 75
A.4 I am using a Git release older than 1.9.4 . 75
A.5 I am using MS Windows and cannot push with Magit 76
A.6 How to install the gitman info manual? . 76
A.7 How can I show Git’s output? . 77
A.8 Expanding a file to show the diff causes it to disappear 77
A.9 Magit claims repository accessed using Tramp does not exist . . 77
A.10 Can Magit be used as ediff-version-control-package? 77
A.11 How to show diffs for gpg-encrypted files? . 78
A.12 Emacs 24.5 hangs when loading Magit . 78

Appendix B Keystroke Index 79

Appendix C Command Index 82

Appendix D Function Index . 85

Appendix E Variable Index . 87

Chapter 1: Introduction 1

1 Introduction

Magit is an interface to the version control system Git, implemented as an Emacs package.
Magit aspires to be a complete Git porcelain. While we cannot (yet) claim that Magit
wraps and improves upon each and every Git command, it is complete enough to allow
even experienced Git users to perform almost all of their daily version control tasks directly
from within Emacs. While many fine Git clients exist, only Magit and Git itself deserve to
be called porcelains.

Staging and otherwise applying changes is one of the most important features in a Git
porcelain and here Magit outshines anything else, including Git itself. Git’s own staging
interface (git add --patch) is so cumbersome that many users only use it in exceptional
cases. In Magit staging a hunk or even just part of a hunk is as trivial as staging all changes
made to a file.

The most visible part of Magit’s interface is the status buffer, which displays information
about the current repository. Its content is created by running several Git commands and
making their output actionable. Among other things, it displays information about the
current branch, lists unpulled and unpushed changes and contains sections displaying the
staged and unstaged changes. That might sound noisy, but, since sections are collapsible,
it’s not.

To stage or unstage a change one places the cursor on the change and then types s or
u. The change can be a file or a hunk, or when the region is active (i.e. when there is a
selection) several files or hunks, or even just part of a hunk. The change or changes that
these commands - and many others - would act on are highlighted.

Magit also implements several other "apply variants" in addition to staging and un-
staging. One can discard or reverse a change, or apply it to the working tree. Git’s own
porcelain only supports this for staging and unstaging and you would have to do something
like git diff ... | ??? | git apply ... to discard, revert, or apply a single hunk on the
command line. In fact that’s exactly what Magit does internally (which is what lead to the
term "apply variants").

Magit isn’t just for Git experts, but it does assume some prior experience with Git as
well as Emacs. That being said, many users have reported that using Magit was what
finally taught them what Git is capable of and how to use it to its fullest. Other users
wished they had switched to Emacs sooner so that they would have gotten their hands on
Magit earlier.

While one has to know the basic features of Emacs to be able to make full use of Magit,
acquiring just enough Emacs skills doesn’t take long and is worth it, even for users who
prefer other editors. Vim users are advised to give Evil, the "Extensible VI Layer for
Emacs", and Spacemacs, an "Emacs starter-kit focused on Evil" a try.

Magit provides a consistent and efficient Git porcelain. After a short learning period,
you will be able to perform most of your daily version control tasks faster than you would
on the command line. You will likely also start using features that seemed too daunting in
the past.

Magit fully embraces Git. It exposes many advanced features using a simple but flexible
interface instead of only wrapping the trivial ones like many GUI clients do. Of course
Magit supports logging, cloning, pushing, and other commands that usually don’t fail in

https://bitbucket.org/lyro/evil/wiki/Home
https://github.com/syl20bnr/spacemacs

Chapter 1: Introduction 2

spectacular ways; but it also supports tasks that often cannot be completed in a single
step. Magit fully supports tasks such as merging, rebasing, cherry-picking, reverting, and
blaming by not only providing a command to initiate these tasks but also by displaying
context sensitive information along the way and providing commands that are useful for
resolving conflicts and resuming the sequence after doing so.

Magit wraps and in many cases improves upon at least the following Git porcelain com-
mands: add, am, bisect, blame, branch, checkout, cherry, cherry-pick, clean, clone,
commit, config, describe, diff, fetch, format-patch, init, log, merge, merge-tree,
mv, notes, pull, rebase, reflog, remote, request-pull, reset, revert, rm, show, stash,
submodule, and tag. Many more Magit porcelain commands are implemented on top of
Git plumbing commands.

Chapter 2: Installation 3

2 Installation

Magit can be installed using Emacs’ package manager or manually from its development
repository.

2.1 Updating from an older release

When updating from 1.2.* or 1.4.*, you should first uninstall Magit and some of its
dependencies and restart Emacs before installing the latest release.

• The old Magit installation has to be removed because some macros have changed
and using the old definitions when building the new release would lead to very strange
results, including compile errors. This is due to a limitation in Emacs’ package manager
or rather Emacs itself: it’s not possible to reliably unload a feature or even all features
belonging to a package.

• Furthermore the old dependencies git-commit-mode and git-rebase-mode have to be
removed because they are no longer used by the 2.1.0 release and later, and get in the
way of their successors git-commit and git-rebase.

So please uninstall the packages magit, git-commit-mode, and git-rebase-mode. Then
quit Emacs and start a new instance. Only then follow the instructions in either one of the
next two sections.

Also note that starting with the 2.1.0 release, Magit requires at least Emacs 24.4 and
Git 1.9.4. You should make sure you have at least these releases installed before updating
Magit. And if you connect to remote hosts using Tramp, then you should also make sure
to install a recent enough Git version on these hosts.

2.2 Installing from an Elpa archive

If you are updating from a release older than 2.1.0, then you have to first uninstall the old
version. See Section 2.1 [Updating from an older release], page 3.

Magit is available from all three of the popular unofficial Elpa archives: Melpa, Melpa-
Stable, and Marmalade. If you haven’t used Emacs’ package manager before, then it is high
time you familiarize yourself with it by reading the documentation in the Emacs manual,
see Section “Packages” in emacs. Then add one of the archives to package-archives:

• To use Melpa:

(require ’package)

(add-to-list ’package-archives

’("melpa" . "http://melpa.org/packages/") t)

• To use Melpa-Stable:

(require ’package)

(add-to-list ’package-archives

’("melpa-stable" . "http://stable.melpa.org/packages/") t)

• To use Marmalade:

(require ’package)

(add-to-list ’package-archives

’("marmalade" . "http://marmalade-repo.org/packages/") t)

Chapter 2: Installation 4

Once you have added your preferred archive, you need to update the local package list
using:

M-x package-refresh-contents RET

Once you have done that, you can install Magit and its dependencies using:

M-x package-install RET magit RET

Now see Section 2.4 [Post-installation tasks], page 5.

2.3 Installing from the Git repository

If you are updating from a release older than 2.1.0, then you have to first uninstall the old
version. See Section 2.1 [Updating from an older release], page 3.

Magit depends on the dash library, available from all three of the popular third-party
Elpa archives. Install it using M-x package-install RET dash RET. Of course you may
also install it manually from its development repository, but I won’t cover that here.

Then clone the Magit repository:

$ git clone git://github.com/magit/magit.git ~/.emacs.d/site-lisp/magit

$ cd ~/.emacs.d/site-lisp/magit

Then compile the libraries and generate the info manuals:

$ make

If you haven’t installed dash using Elpa or at /path/to/magit/../dash, then you have
to tell make where to find it. To do so create /path/to/magit/config.mk with the following
content before running make:

LOAD_PATH = -L /path/to/magit/lisp -L /path/to/dash

Finally add this to your init file:

(add-to-list ’load-path "~/.emacs.d/site-lisp/magit/lisp")

(require ’magit)

(with-eval-after-load ’info

(info-initialize)

(add-to-list ’Info-directory-list

"~/.emacs.d/site-lisp/magit/Documentation/"))

Note that you have to add the lisp/ subdirectory to the load-path, not the top-level
of the repository.

Instead of requiring the feature magit, you could only load the autoloads, by loading
the file magit-autoloads.el.

Instead of running Magit directly from the repository by adding that to the load-path,
you might want to instead install it in some other directory using sudo make install and
setting load-path accordingly.

To update Magit use:

$ git pull

$ make

At times it might be necessary to run make clean all instead.

To view all available targets use make help.

Now see Section 2.4 [Post-installation tasks], page 5.

Chapter 2: Installation 5

2.4 Post-installation tasks

After installing Magit you should verify that you are indeed using the Magit, Git, and
Emacs releases you think you are using. It’s best to restart Emacs before doing so, to make
sure you are not using an outdated value for load-path.

M-x magit-version RET

should display something like

Magit 2.2.0, Git 2.4.2, Emacs 24.5.1

Then you might also want to read about options that many users likely want to customize.
See Section 9.2 [Essential settings], page 61.

To be able to follow cross references to Git manpages found in this manual, you might
also have to manually install the gitman info manual, or advice Info-follow-nearest-

node to instead open the actual manpage. See Section A.6 [How to install the gitman info
manual?], page 76.

If you are completely new to Magit then see Chapter 3 [Getting started], page 6.

If you have used an older Magit release before, then you should have a look at the release
notes https://raw.githubusercontent.com/magit/magit/master/Documentation/

RelNotes/2.1.0.txt and https://raw.githubusercontent.com/magit/magit/master/

Documentation/RelNotes/2.2.0.txt

And last but not least please consider making a donation, to ensure that I can keep
working on Magit. See http://magit.vc/donations.html for various donation options.

https://raw.githubusercontent.com/magit/magit/master/Documentation/RelNotes/2.1.0.txt
https://raw.githubusercontent.com/magit/magit/master/Documentation/RelNotes/2.1.0.txt
https://raw.githubusercontent.com/magit/magit/master/Documentation/RelNotes/2.2.0.txt
https://raw.githubusercontent.com/magit/magit/master/Documentation/RelNotes/2.2.0.txt
http://magit.vc/donations.html

Chapter 3: Getting started 6

3 Getting started

This section describes the most essential features that many Magitians use on a daily basis.
It only scratches the surface but should be enough to get you started.

(You might want to create a repository just for this walk-through, e.g. by cloning an
existing repository. If you don’t use a separate repository then make sure you create a
snapshot as described below).

To display information about the current Git repository, type M-x magit-status. You
will be doing that so often that it is best to bind this command globally:

(global-set-key (kbd "C-x g") ’magit-status)

Most Magit commands are commonly invoked from this buffer. It should be considered
the primary interface to interact with Git using Magit. There are many other Magit buffers,
but they are usually created from this buffer.

Depending on what state your repository is in, this buffer will contain sections ti-
tled "Staged changes", "Unstaged changes", "Unpulled commits", "Unpushed commits",
and/or some others.

If some staged and/or unstaged changes exist, you should back them up now. Type z to
show the stashing popup buffer featuring various stash variants and arguments that can be
passed to these commands. Do not worry about those for now, just type Z (uppercase) to
create a stash while also keeping the index and work tree intact. The status buffer should
now also contain a section titled "Stashes".

Otherwise, if there are no uncommitted changes, you should create some now by editing
and saving some of the tracked files. Then go back to the status buffer, while at the same
time refreshing it, by typing C-x g. (When the status buffer, or any Magit buffer for that
matter, is the current buffer, then you can also use just g to refresh it).

Move between sections using p and n. Note that the bodies of some sections are hidden.
Type TAB to expand or collapse the section at point. You can also use C-tab to cycle the
visibility of the current section and its children. Move to a file section inside the section
named "Unstaged changes" and type s to stage the changes you have made to that file.
That file now appears under "Staged changes".

Magit can stage and unstage individual hunks, not just complete files. Move to the file
you have just staged, expand it using TAB, move to one of the hunks using n, and unstage
just that by typing u. Note how the staging (s) and unstaging (u) commands operate on
the change at point. Many other commands behave the same way.

You can also un-/stage just part of a hunk. Inside the body of a hunk section (move
there using C-n), set the mark using C-SPC and move down until some added and removed
lines fall inside the region but not all of them. Again type s to stage.

It’s also possible to un-/stage multiple files at once. Move to a file section, type C-SPC,
move to the next file using n, and then s to stage both files. Note that both the mark and
point have to be on the headings of sibling sections for this to work. If the region looks like
it does in other buffers, then it doesn’t select Magit sections that can be acted on as a unit.

And then of course you want to commit your changes. Type c. This shows the commit-
ting popup buffer featuring various commit variants and arguments that can be passed to

Chapter 3: Getting started 7

git commit. Do not worry about those for now. We want to create a "normal" commit,
which is done by typing c again.

Now two new buffers appear. One is for writing the commit message, the other shows
a diff with the changes that are about to committed. Write a message and then type C-c

C-c to actually create the commit.

You probably don’t want to push the commit you just created because you just commit-
ted some random changes, but if that is not the case you could push it by typing P to bring
up the push popup and then P again to push to the configured upstream. (If the upstream
is not configured, then you would be prompted for the push target instead.)

Instead we are going to undo the changes made so far. Bring up the log for the current
branch by typing l l, move to the last commit created before starting with this walk through
using n, and do a hard reset using C-u x. WARNING: this discards all uncommitted
changes. If you did not follow the advice about using a separate repository for these
experiments and did not create a snapshot of uncommitted changes before starting to try
out Magit, then don’t do this.

So far we have mentioned the commit, push, and log popups. These are probably among
the popups you will be using the most, but many others exist. To show a popup with all
other popups (as well as the various apply commands), type h. Try a few.

The key bindings in that popup correspond to the bindings in Magit buffers, including
but not limited to the status buffer. So you could type h d to bring up the diff popup, but
once you remember that "d" stands for "diff", you would usually do so by just typing d.
But the "popup of popups" is useful even once you have memorized all the bindings, as it
can provide easy access to Magit commands from non-Magit buffers. So you should bind
this globally too:

(global-set-key (kbd "C-x M-g") ’magit-dispatch-popup)

You might also want to enable global-magit-file-buffer-mode (see Section 8.5 [File-
buffer mode], page 59).

Chapter 4: Interface concepts 8

4 Interface concepts

4.1 Modes and Buffers

Magit provides several major modes. For each of these modes there usually exists only one
buffer per repository. Separate modes and thus buffers exist for commits, diffs, logs, and
some other things.

In this manual we often speak about "Magit buffers". By that we mean buffers whose
major-modes derive from magit-mode.

Besides these special purpose buffers, there also exists an overview buffer, called the
status buffer. Its usually from this buffer that the user invokes Git commands, or creates
or visits other buffers.

q (magit-mode-bury-buffer)
This command buries the current Magit buffer. With a prefix argument, it
instead kills the buffer.

If magit-restore-window-configuration is non-nil and the last configura-
tion stored by magit-mode-display-buffer originates from the selected frame
(which usually is the case), then that is restored after burying or killing the
buffer.

[User Option]magit-restore-window-configuration
This option controls whether quitting a Magit buffer restores the previous window
configuration.

While it often is enough to have one buffer of a certain Magit mode per repository, this is
not always the case. You might, for example, want to view the diffs for two commits at the
same time. To do so, first rename the existing revision buffer. Then show another commit.
Usually that would reuse the existing buffer, but because its name no longer matches the
default name, a new buffer is created instead. The new buffer uses the default name, and
therefore will be reused to show other commits as usual.

M-x magit-rename-buffer (magit-rename-buffer)
This command changes the name of the current Magit buffer by appending <N>

and thereby keeping Magit from re-using it to display other information of the
same kind.

With a prefix argument, the user can pick an arbitrary name.

M-w (magit-copy-buffer-thing-as-kill)
This command saves a representation of the thing that is being displayed in the
current buffer to the kill ring.

In buffers in which it is undefined what this "buffer thing" is, this command
instead saves the value of the current section, as magit-copy-as-kill would.

When the region is active, then this command behaves like kill-ring-save.

C-w (magit-copy-as-kill)
This commands saves the value of the current section to the kill ring. For
commits it saves the full hash. For branches it saves the branch name, except
when a prefix argument is used, then it saves the full hash.

Chapter 4: Interface concepts 9

When the region is active, then this command behaves like kill-ring-save.

4.2 Automatic save

File-visiting buffers are by default saved at certain points in time. This doesn’t guarantee
that Magit buffers are always up-to-date, but, provided one only edits files by editing them
in Emacs and uses only Magit to interact with Git, one can be fairly confident. When in
doubt or after outside changes, type g (magit-refresh) to save and refresh explicitly.

[User Option]magit-save-repository-buffers
This option controls whether file-visiting buffers are saved before certain events.

If this is non-nil then all modified file-visiting buffers belonging to the current reposi-
tory may be saved before running commands, before creating new Magit buffers, and
before explicitly refreshing such buffers. If this is dontask then this is done without
user intervention. If it is t then the user has to confirm each save.

4.3 Automatic refresh and revert

After running a command which may change the state of the current repository, the current
Magit buffer and the corresponding status buffer are refreshed. This ensures that the
displayed information is up-to-date but can lead to a noticeable delay in big repositories.
Other Magit buffers are not refreshed to keep the delay to a minimum and also because
doing so can sometimes be undesirable.

[User Option]magit-revert-buffers
This option controls if and how file-visiting buffers in the current repository are re-
verted.

Unmodified buffers visiting files belonging to the current repository may be reverted
after refreshing the current Magit buffer and after running certain other commands.

• nil

Don’t revert any buffers.

• ask

List the buffers which might potentially have to be reverted and ask the user
whether she wants to revert them. If so, then do it synchronously.

• t

Revert the buffers synchronously, mentioning each one as it is being reverted and
then also show a summary in the echo area.

• usage

Like t but include usage information in the summary. This is the default so that
users come here and pick what is right for them.

• silent

Revert the buffers synchronously and be quiet about it.

• NUMBER

An integer or float. Revert the buffers asynchronously, mentioning each one as
it is being reverted. If user input arrives, then stop reverting. After NUMBER
seconds resume reverting.

Chapter 4: Interface concepts 10

Buffers can also be refreshed explicitly, which is useful in buffers that weren’t current
during the last refresh and after changes were made to the repository outside of Magit.

g (magit-refresh)
This command refreshes the current buffer if its major mode derives from
magit-mode as well as the corresponding status buffer.

If the option magit-revert-buffers calls for it, then it also reverts all unmod-
ified buffers that visit files being tracked in the current repository.

G (magit-refresh-all)
This command refreshes all Magit buffers belonging to the current repository
and also reverts all unmodified buffers that visit files being tracked in the current
repository.

The file-visiting buffers are always reverted, even if magit-revert-buffers is
nil.

[User Option]magit-refresh-buffer-hook
This hook is run in each Magit buffer that was refreshed during the current refresh -
normally the current buffer and the status buffer.

[User Option]magit-after-revert-hook
This hook is run in each file-visiting buffer belonging to the current repository that
was actually reverted during a refresh.

Note that adding something here is very expensive. If you experience performance
issues, you might want to check this hook, as well as magit-not-reverted-hook and,
if possible, remove some of the functions added by third-party packages.

[User Option]magit-not-reverted-hook
This hook is run in each file-visiting buffer belonging to the current repository that
was reverted during a refresh. The file was not reverted because it did not change,
and so Magit does not have to do anything. This hook is intended for third-party
extensions that need to run some functions even on such files.

4.4 Sections

Magit buffers are organized into nested sections, which can be collapsed and expanded,
similar to how sections are handled in Org mode. Each section also has a type, and some
sections also have a value. For each section type there can also be a local keymap, shared
by all sections of that type.

Taking advantage the section value and type, many commands operate on the current
section, or when the region is active and selects sections of the same type, all of the selected
sections. Commands that only make sense for a particular section type (as opposed to just
behaving differently depending on the type) are usually bound in section type keymaps.

4.4.1 Section movement

To move within a section use the usual keys (C-p, C-n, C-b, C-f etc), whose global bindings
are not shadowed. To move to another section use the following commands.

Chapter 4: Interface concepts 11

p (magit-section-backward)
When not at the beginning of a section, then move to the beginning of the
current section. At the beginning of a section, instead move to the beginning
of the previous visible section.

n (magit-section-forward)
Move to the beginning of the next visible section.

M-p (magit-section-backward-siblings)
Move to the beginning of the previous sibling section. If there is no previous
sibling section, then move to the parent section instead.

M-n (magit-section-forward-siblings)
Move to the beginning of the next sibling section. If there is no next sibling
section, then move to the parent section instead.

^ (magit-section-up)
Move to the beginning of the parent of the current section.

The above commands all call the hook magit-section-movement-hook. And, except
for the second, the below functions are all members of that hook’s default value.

[Variable]magit-section-movement-hook
This hook is run by all of the above movement commands, after arriving at the
destination.

[Function]magit-hunk-set-window-start
This hook function ensures that the beginning of the current section is visible, pro-
vided it is a hunk section. Otherwise, it does nothing.

[Function]magit-section-set-window-start
This hook function ensures that the beginning of the current section is visible, regard-
less of the section’s type. If you add this to magit-section-movement-hook, then
you must remove the hunk-only variant in turn.

[Function]magit-log-maybe-show-commit
This hook function shows the commit at point in another window. If the section at
point is a commit section and the value of magit-diff-auto-show-p calls for it, then
the commit is shown in another window, using magit-show-commit.

[Function]magit-log-maybe-show-more-commits
This hook function only has an effect in log buffers, and point is on the "show more"
section. If that is the case, then it doubles the number of commits that are being
shown.

4.4.2 Section visibility

Magit provides many commands for changing the visibility of sections, but all you need to
get started are the next two.

TAB (magit-section-toggle)
Toggle the visibility of the body of the current section.

Chapter 4: Interface concepts 12

C-<tab> (magit-section-cycle)
Cycle the visibility of current section and its children.

M-<tab> (magit-section-cycle-diffs)
Cycle the visibility of diff-related sections in the current buffer.

s-<tab> (magit-section-cycle-global)
Cycle the visibility of all sections in the current buffer.

[Command]magit-section-show-level-1
[Command]magit-section-show-level-2
[Command]magit-section-show-level-3
[Command]magit-section-show-level-4

To show sections surrounding the current section, up to level N, press the respective
number key (1, 2, 3, or 4).

[Command]magit-section-show-level-1-all
[Command]magit-section-show-level-2-all
[Command]magit-section-show-level-3-all
[Command]magit-section-show-level-4-all

To show all sections up to level N, press the respective number key and meta (M-1,
M-2, M-3, or M-4).

Some functions, which are used to implement the above commands, are also exposed
as commands themselves. By default no keys are bound to these commands, as they are
generally perceived to be much less useful. But your mileage may vary.

[Command]magit-section-show
Show the body of the current section.

[Command]magit-section-hide
Hide the body of the current section.

[Command]magit-section-show-headings
Recursively show headings of children of the current section. Only show the headings.
Previously shown text-only bodies are hidden.

[Command]magit-section-show-children
Recursively show the bodies of children of the current section. With a prefix argument
show children down to the level of the currect section, and hide deeper children.

[Command]magit-section-hide-children
Recursively hide the bodies of children of the current section.

[Command]magit-section-toggle-children
Toggle visibility of bodies of children of the current section.

When a buffer is first created then some sections are shown expanded while others
are not. This is hard coded. When a buffer is refreshed then the previous visibility is
preserved. The initial visibility of certain sections can also be overwritten using the hook
magit-section-set-visibility-hook.

Chapter 4: Interface concepts 13

[Variable]magit-section-set-visibility-hook
This hook is run when first creating a buffer and also when refreshing an existing
buffer, and is used to determine the visibility of the section currently being inserted.

Each function is called with one argument, the section being inserted. It should return
hide or show, or to leave the visibility undefined nil. If no function decides on the
visibility and the buffer is being refreshed, then the visibility is preserved; or if the
buffer is being created, then the hard coded default is used.

Usually this should only be used to set the initial visibility but not during refreshes.
If magit-insert-section--oldroot is non-nil, then the buffer is being refreshed and
these functions should immediately return nil.

4.4.3 Section hooks

Which sections are inserted into certain buffers is controlled with hooks. This includes the
status and the refs buffers. For other buffers, e.g. log, diff, and revision buffers, this is not
possible.

For buffers whose sections can be customized by the user, a hook variable
called magit-TYPE-sections-hook exists. This hook should be changed using
magit-add-section-hook. Avoid using add-hooks or the Custom interface.

The various available section hook variables are described later in this manual along
with the appropriate "section inserter functions".

[Function]magit-add-section-hook hook function &optional at append local
Add the function FUNCTION to the value of section hook HOOK.

Add FUNCTION at the beginning of the hook list unless optional APPEND is non-
nil, in which case FUNCTION is added at the end. If FUNCTION already is a
member then move it to the new location.

If optional AT is non-nil and a member of the hook list, then add FUNCTION next
to that instead. Add before or after AT depending on APPEND. If only FUNCTION
is a member of the list, then leave it wherever it already is.

If optional LOCAL is non-nil, then modify the hook’s buffer-local value rather than
its global value. This makes the hook local by copying the default value. That copy
is then modified.

HOOK should be a symbol. If HOOK is void, it is first set to nil. HOOK’s value
must not be a single hook function. FUNCTION should be a function that takes
no arguments and inserts one or multiple sections at point, moving point forward.
FUNCTION may choose not to insert its section(s), when doing so would not make
sense. It should not be abused for other side-effects.

To remove a function from a section hook, use remove-hook.

4.4.4 Section types and values

Each section has a type, for example hunk, file, and commit. Instances of certain section
types also have a value. The value of a section of type file, for example, is a file name.

Users usually do not have to worry about a section’s type and value, but knowing them
can be handy at times.

Chapter 4: Interface concepts 14

M-x magit-describe-section (magit-describe-section)
Show information about the section at point in the echo area, as "VALUE
[TYPE PARENT-TYPE. . .] BEGINNING-END".

Many commands behave differently depending on the type of the section at point and/or
somehow consume the value of that section. But that is only one of the reasons why the
same key may do something different, depending on what section is current.

Additionally for each section type a keymap might be defined, named magit-TYPE-

section-map. That keymap is used as text property keymap of all text belonging to any
section of the respective type. If such a map does not exist for a certain type, then you can
define it yourself, and it will automatically be used.

4.4.5 Section options

This section describes options that have an effect on more than just a certain type of
sections. As you can see there are not many of those.

[User Option]magit-section-show-child-count
Whether to append the number of children to section headings. This only affects
sections that could benefit from this information.

4.5 Popup buffers and prefix commands

Many Magit commands are implemented using popup buffers. First the user invokes a
popup or prefix command, which causes a popup buffer with the available infix arguments
and suffix commands to be displayed. The user then optionally toggles/sets some arguments
and finally invokes one of the suffix commands.

This is implemented in the library magit-popup. Earlier releases used the library
magit-key-mode. A future release will switch to a yet-to-be-written successor, which will
likely be named transient.

Because magit-popup can also be used by other packages without having to depend on
all of Magit, it is documented in its own manual. See magit-popup.

C-c C-c (magit-dispatch-popup)
This popup command shows a buffer featuring all other Magit popup commands
as well as some other commands that are not popup commands themselves.

This command is also, or especially, useful outside Magit buffers, so you should setup a
global binding:

(global-set-key (kbd "C-x M-g") ’magit-dispatch-popup)

4.6 Completion and confirmation

Many commands read a value from the user. By default this is done using the built-in
function completing-read, but Magit can instead use another completion framework.

[User Option]magit-completing-read-function
The value of this variable is the function used to perform completion. Because func-
tions intended to replace completing-read often are not fully compatible drop-in
replacements, and also because Magit expects them to add the default choice to the

Chapter 4: Interface concepts 15

prompt themselves, such functions should not be used directly. Instead a wrapper
function has to be used.

Currently only the real completing-read and Ido are fully supported. More frameworks
will be supported in the future.

[Function]magit-builtin-completing-read prompt choices &optional predicate
require-match initial-input hist def

Perform completion using completion-read.

[Function]magit-ido-completing-read prompt choices &optional predicate
require-match initial-input hist def

Perform completion using ido-completing-read+ from the package by the same
name (which you have to explicitly install). Ido itself comes with a supposed drop-
in replacement ido-completing-read, but that has too many deficits to serve our
needs.

By default many commands that could potentially lead to data loss have to be confirmed.
This includes many very common commands, so this can become annoying quickly. Many
of these actions can be undone, provided magit-wip-before-change-mode is turned on
(which it is not by default, due to performance concerns).

[User Option]magit-no-confirm
The value of this option is a list of symbols, representing commands which do not
have to be confirmed by the user before being carried out.

When the global mode magit-wip-before-change-mode is enabled then many com-
mands can be undone. If that mode is enabled then adding safe-with-wip to
this list has the same effect as adding discard, reverse, stage-all-changes, and
unstage-all-changes.

(add-to-list ’magit-no-confirm ’safe-with-wip)

For a list of all symbols that can be added to the value of this variable, see the
doc-string.

Note that there are commands that ignore this option and always require confirmation,
or which can be told not to do so using another dedicated option. Also most commands,
when acting on multiple sections at once always, require confirmation, even when they do
respect this option when acting on a single section.

4.7 Running Git

4.7.1 Viewing Git output

Magit runs Git either for side-effects (e.g. when pushing) or to get some value (e.g. the
name of the current branch). When Git is run for side-effects then the output goes into a
per-repository log buffer, which can be consulted when things don’t go as expected.

$ (magit-process)
This commands displays the process buffer for the current repository.

http://www.emacswiki.org/emacs/InteractivelyDoThings

Chapter 4: Interface concepts 16

Inside that buffer, the usual key bindings for navigating and showing sections are avail-
able. There is one additional command.

k (magit-process-kill)
This command kills the process represented by the section at point.

[User Option]magit-git-debug
When this is non-nil then the output of all calls to git are logged in the process buffer.
This is useful when debugging, otherwise it just negatively affects performance.

4.7.2 Running Git manually

While Magit provides many Emacs commands to interact with Git, it does not cover ev-
erything. In those cases your existing Git knowledge will come in handy. Magit provides
some commands for running arbitrary Git commands by typing them into the minibuffer,
instead of having to switch to a shell.

! (magit-run-popup)
Shows the popup buffer featuring the below suffix commands.

These suffix commands run a Git subcommand. The user input has to begin with the
subcommand, "git" is assumed.

! ! (magit-git-command-topdir)
This command reads a Git subcommand from the user and executes it in the
top-level directory of the current repository.

! p (magit-git-command)
This command reads a Git subcommand from the user and executes it in
default-directory. With a prefix argument the command is executed in
the top-level directory of the current repository instead.

These suffix commands run arbitrary shell commands.

! ! (magit-shell-command-topdir)
This command reads a shell command from the user and executes it in the
top-level directory of the current repository.

! p (magit-shell-command)
This command reads a shell command from the user and executes it in
default-directory. With a prefix argument the command is executed in the
top-level directory of the current repository instead.

These suffix commands start external gui tools.

! k (magit-run-gitk)
This command runs gitk in the current repository.

! a (magit-run-gitk-all)
This command runs gitk --all in the current repository.

! b (magit-run-gitk-branches)
This command runs gitk --branches in the current repository.

! g (magit-run-git-gui)
This command runs git gui in the current repository.

Chapter 4: Interface concepts 17

4.7.3 Git executable

Except on MS Windows, Magit defaults to running Git without specifying the path to the
git executable. Instead the first executable found by Emacs on exec-path is used (whose
value in turn is set based on the value of the environment variable $PATH when Emacs was
started).

This has the advantage that it continues to work even when using Tramp to connect to
a remote machine on which the executable is found in a different place. The downside is
that if you have multiple versions of Git installed, then you might end up using another
version than the one you think you are using.

M-x magit-version (magit-version)
Shows the currently used versions of Magit, Git, and Emacs in the echo area.
Non-interactively this just returns the Magit version.

When the system-type is windows-nt, then magit-git-executable is set to an abso-
lute path when Magit is first loaded. This is necessary because Git on that platform comes
with several wrapper scripts for the actual git binary, which are also placed on $PATH, and
using one of these wrappers instead of the binary would degrade performance horribly.

If Magit doesn’t find the correct executable then you can work around that by setting
magit-git-executable to an absolute path. But note that doing so is a kludge. It is
better to make sure the order in the environment variable $PATH is correct, and that Emacs
is started with that environment in effect. If you have to connect from Windows to a
non-Windows machine, then you must change the value to "git".

[User Option]magit-git-executable
The git executable used by Magit, either the full path to the executable or the string
"git" to let Emacs find the executable itself, using the standard mechanism for doing
such things.

4.7.4 Global Git arguments

[User Option]magit-git-global-arguments
The arguments set here are used every time the git executable is run as a subprocess.
They are placed right after the executable itself and before the git command - as in
git HERE... COMMAND REST. For valid arguments see the git(1) manpage .

Be careful what you add here, especially if you are using Tramp to connect to servers
with ancient Git versions. Never remove anything that is part of the default value,
unless you really know what you are doing. And think very hard before adding
something; it will be used every time Magit runs Git for any purpose.

Chapter 5: Inspecting 18

5 Inspecting

The functionality provided by Magit can be roughly divided into three groups: inspecting
existing data, manipulating existing data or adding new data, and transferring data. Of
course that is a rather crude distinction that often falls short, but it’s more useful than
no distinction at all. This section is concerned with inspecting data, the next two with
manipulating and transferring it. Then follows a section about miscellaneous functionality,
which cannot easily be fit into this distinction.

Of course other distinctions make sense too, e.g. Git’s distinction between porcelain and
plumbing commands, which for the most part is equivalent to Emacs’ distinction between
interactive commands and non-interactive functions. All of the sections mentioned before
are mainly concerned with the porcelain – Magit’s plumbing layer is described later.

5.1 Status buffer

While other Magit buffers contain e.g. one particular diff or one particular log, the status
buffer contains the diffs for staged and unstaged changes, logs for unpushed and unpulled
commits, lists of stashes and untracked files, and information related to the current branch.

During certain incomplete operations – for example when a merge resulted in a conflict
– additional information is displayed that helps proceeding with or aborting the operation.

The command magit-status displays the status buffer belonging to the current repos-
itory in another window. This command is used so often that it should be bound globally.
We recommend using C-x g:

(global-set-key (kbd "C-x g") ’magit-status)

C-x g (magit-status)
Show the status of the current Git repository in a buffer. With a prefix argument
prompt for a repository to be shown. With two prefix arguments prompt for
an arbitrary directory. If that directory isn’t the root of an existing repository,
then offer to initialize it as a new repository.

[User Option]magit-repository-directories
Directories containing Git repositories. Magit checks these directories for Git reposi-
tories and offers them as choices when magit-status is used with a prefix argument.

[User Option]magit-repository-directories-depth
The maximum depth to look for Git repositories. When looking for a Git repository
below the directories in magit-repository-directories, only descend this many
levels deep.

[Command]ido-enter-magit-status
From an Ido prompt used to open a file, instead drop into magit-status. This is
similar to ido-magic-delete-char, which, despite its name, usually causes a Dired
buffer to be created.

To make this command available, use something like:

(add-hook ’ido-setup-hook

(lambda ()

Chapter 5: Inspecting 19

(define-key ido-completion-map

(kbd \"C-x g\") ’ido-enter-magit-status)))

Starting with Emacs 25.1 the Ido keymaps are defined just once instead of every time
Ido is invoked, so now you can modify it like pretty much every other keymap:

(define-key ido-common-completion-map

(kbd \"C-x g\") ’ido-enter-magit-status)

5.1.1 Status sections

The contents of status buffers is controlled using the hook magit-status-sections-hook.
See Section 4.4.3 [Section hooks], page 13 to learn about such hooks and how to customize
them.

[User Option]magit-status-sections-hook
Hook run to insert sections into a status buffer.

The first function on that hook by default is magit-insert-status-headers; it is de-
scribed in the next section. By default the following functions are also members of that
hook:

[Function]magit-insert-merge-log
Insert section for the on-going merge. Display the heads that are being merged. If
no merge is in progress, do nothing.

[Function]magit-insert-rebase-sequence
Insert section for the on-going rebase sequence. If no such sequence is in progress, do
nothing.

[Function]magit-insert-am-sequence
Insert section for the on-going patch applying sequence. If no such sequence is in
progress, do nothing.

[Function]magit-insert-sequencer-sequence
Insert section for the on-going cherry-pick or revert sequence. If no such sequence is
in progress, do nothing.

[Function]magit-insert-bisect-output
While bisecting, insert section with output from git bisect.

[Function]magit-insert-bisect-rest
While bisecting, insert section visualizing the bisect state.

[Function]magit-insert-bisect-log
While bisecting, insert section logging bisect progress.

[Function]magit-insert-untracked-files
Maybe insert a list or tree of untracked files. Do so depending on the value of
status.showUntrackedFiles.

[Function]magit-insert-unstaged-changes
Insert section showing unstaged changes.

Chapter 5: Inspecting 20

[Function]magit-insert-staged-changes
Insert section showing staged changes.

[Function]magit-insert-stashes &optional ref heading
Insert the stashes section showing reflog for "refs/stash". If optional REF is non-nil
show reflog for that instead. If optional HEADING is non-nil use that as section
heading instead of "Stashes:".

[Function]magit-insert-unpulled-commits
Insert section showing unpulled commits.

[Function]magit-insert-unpushed-commits
Insert section showing unpushed commits.

The following functions can also be added to the above hook:

[Function]magit-insert-tracked-files
Insert a tree of tracked files.

[Function]magit-insert-unpulled-or-recent-commits
Insert section showing unpulled or recent commits. If an upstream is configured for
the current branch and it is ahead of the current branch, then show the missing
commits. Otherwise, show the last magit-log-section-commit-count commits.

[Function]magit-insert-recent-commits
Insert section showing the last magit-log-section-commit-count commits.

[User Option]magit-log-section-commit-count
How many recent commits magit-insert-recent-commits and magit-insert-

unpulled-or-recent-commits (provided there are no unpulled commits)
show.

[Function]magit-insert-unpulled-cherries
Insert section showing unpulled commits. Like magit-insert-unpulled-commits

but prefix each commit that has not been applied yet (i.e. a commit with a patch-id
not shared with any local commit) with "+", and all others with "-".

[Function]magit-insert-unpulled-module-commits
Insert sections for all submodules with unpulled commits. These sections can be
expanded to show the respective commits.

[Function]magit-insert-unpushed-cherries
Insert section showing unpushed commits. Like magit-insert-unpushed-commits

but prefix each commit which has not been applied to upstream yet (i.e. a commit
with a patch-id not shared with any upstream commit) with "+" and all others with
"-".

[Function]magit-insert-unpushed-module-commits
Insert sections for all submodules with unpushed commits. These sections can be
expanded to show the respective commits.

See Section 5.5 [References buffer], page 31 for some more section inserters, which could
be used here.

Chapter 5: Inspecting 21

5.1.2 Status header sections

The contents of status buffers is controlled using the hook magit-status-sections-hook,
as described in the previous section. By default magit-insert-status-headers is the first
member of that hook variable.

[Function]magit-insert-status-headers
Insert headers sections appropriate for magit-status-mode buffers. The sections are
inserted by running the functions on the hook magit-status-headers-hook.

[User Option]magit-status-headers-hook
Hook run to insert headers sections into the status buffer.

This hook is run by magit-insert-status-headers, which in turn has to be a mem-
ber of magit-insert-status-sections to be used at all.

By default the following functions are members of the above hook:

[Function]magit-insert-head-header
Insert a header line about the HEAD commit.

[Function]magit-insert-upstream-header
Insert a header line about the upstream branch and its tip.

[Function]magit-insert-tags-header
Insert a header line about the current and/or next tag.

The following functions can also be added to the above hook:

[Function]magit-insert-repo-header
Insert a header line showing the path to the repository top-level.

[Function]magit-insert-remote-header
Insert a header line about the remote of the current branch.

If no remote is configured for the current branch, then fall back showing the "origin"
remote, or if that does not exist the first remote in alphabetic order.

[Function]magit-insert-user-header
Insert a header line about the current user.

5.1.3 Status options

[User Option]magit-status-refresh-hook
Hook run after a status buffer has been refreshed.

[User Option]magit-status-buffer-switch-function
Function used by magit-status to switch to a status buffer. The function is given
one argument, the status buffer.

[User Option]magit-status-buffer-name-format
Name format for buffers used to display a repository’s status.

The following format-like specs are supported: %a the absolute filename of the repos-
itory top-level. %b the basename of the repository top-level.

Chapter 5: Inspecting 22

[User Option]magit-log-section-args
Additional Git arguments used when creating log sections. Only --graph,
--decorate, and --show-signature are supported. This option is only a temporary
kludge and will be removed.

Note that due to an issue in Git the use of --graph is very slow with long histories,
so you probably don’t want to add this here.

Also see the proceeding section for more options concerning status buffers.

5.2 Logging

The status buffer contains logs for the unpushed and unpulled commits, but that obvi-
ously isn’t enough. The prefix command magit-log-popup, on l, features several suffix
commands, which show a specific log in a separate log buffer.

Like other popups, the log popup also features several arguments that can be changed
before invoking one of the suffix commands. However in case of the log popup these ar-
guments correspond to those currently in use in the current repository’s log buffer. When
the log popup is invoked while no log buffer exists for the current repository yet, then the
default value of magit-log-arguments is used instead.

For information about the various arguments, see the git-log(1) manpage .

The log popup also features several reflog commands. See Section 5.2.4 [Reflog], page 25.

l (magit-log-popup)
This prefix command shows the following suffix commands along with the ap-
propriate infix arguments in a popup buffer.

l l (magit-log-current)
Show log for the current branch. When HEAD is detached or with a prefix
argument, show log for one or more revs read from the minibuffer.

l o (magit-log)
Show log for one or more revs read from the minibuffer. The user can input any
revision or revisions separated by a space, or even ranges, but only branches,
tags, and a representation of the commit at point are available as completion
candidates.

l h (magit-log-head)
Show log for HEAD.

l L (magit-log-branches)
Show log for all local branches and HEAD.

l b (magit-log-all-branches)
Show log for all local and remote branches and HEAD.

l a (magit-log-all)
Show log for all references and HEAD.

The following related commands are not available from the popup.

Y (magit-cherry)
Show commits in a branch that are not merged in the upstream branch.

Chapter 5: Inspecting 23

M-x magit-log-buffer-file (magit-log-buffer-file)
Show log for the file visited in the current buffer.

5.2.1 Refreshing logs

The prefix command magit-log-refresh-popup, on L, can be used to change the log
arguments used in the current buffer, without changing which log is shown. This works in
dedicated log buffers, but also in the status buffer.

L (magit-log-refresh-popup)
This prefix command shows the following suffix commands along with the ap-
propriate infix arguments in a popup buffer.

L g (magit-log-refresh)
This suffix command sets the local log arguments for the current buffer.

L s (magit-log-set-default-arguments)
This suffix command sets the default log arguments for buffers of the same type
as that of the current buffer. Other existing buffers of the same type are not
affected because their local values have already been initialized.

L w (magit-log-save-default-arguments)
This suffix command sets the default log arguments for buffers of the same
type as that of the current buffer, and saves the value for future sessions. Other
existing buffers of the same type are not affected because their local values have
already been initialized.

L t (magit-toggle-margin)
Show or hide the margin.

5.2.2 Log Buffer

C-c C-b (magit-go-backward)
Move backward in current buffer’s history.

C-c C-f (magit-go-forward)
Move forward in current buffer’s history.

SPC (magit-diff-show-or-scroll-up)
Update the commit or diff buffer for the thing at point.

Either show the commit or stash at point in the appropriate buffer, or if that
buffer is already being displayed in the current frame and contains information
about that commit or stash, then instead scroll the buffer up. If there is no
commit or stash at point, then prompt for a commit.

DEL (magit-diff-show-or-scroll-down)
Update the commit or diff buffer for the thing at point.

Either show the commit or stash at point in the appropriate buffer, or if that
buffer is already being displayed in the current frame and contains information
about that commit or stash, then instead scroll the buffer down. If there is no
commit or stash at point, then prompt for a commit.

Chapter 5: Inspecting 24

q (magit-log-bury-buffer)
Bury the current buffer or the revision buffer in the same frame. Like
magit-mode-bury-buffer (which see) but with a negative prefix argument
instead bury the revision buffer, provided it is displayed in the current frame.

[User Option]magit-log-auto-more
Insert more log entries automatically when moving past the last entry. Only consid-
ered when moving past the last entry with magit-goto-*-section commands.

+ (magit-log-show-more-commits)
Increase the number of commits shown in current log.

With no prefix argument, show twice as many commits as before. With a
numerical prefix argument, show this many additional commits. With a non-
numeric prefix argument, show all commits.

When no limit was previously imposed in the current buffer, set the local limit
to the default limit instead (or if that is nil then 100), regardless of the prefix
argument.

By default magit-log-cutoff-length commits are shown.

[User Option]magit-log-show-margin
Whether to initially show the margin in log buffers.

When non-nil the author name and date are initially displayed in the margin of log
buffers. The margin can be shown or hidden in the current buffer using the command
magit-toggle-margin.

When a log buffer contains a verbose log, then the margin is never displayed. In
status buffers this option is ignored, but it is possible to show the margin using the
mentioned command.

L (magit-log-refresh-popup)
This prefix command shows the following suffix commands along with the ap-
propriate infix arguments in a popup buffer. See Section 5.2.1 [Refreshing logs],
page 23.

[User Option]magit-log-cutoff-length
The maximum number of commits to show in log and reflog buffers.

[User Option]magit-log-show-refname-after-summary
Whether to show the refnames after the commit summaries. This is useful if you use
really long branch names.

5.2.3 Select from log

When the user has to select a recent commit that is reachable from HEAD, using regu-
lar completion would be inconvenient (because most humans cannot remember hashes or
"HEAD~5", at least not without double checking). Instead a log buffer is used to select
the commit, which has the advantage that commits are presented in order and with the
commit message. The following additional key bindings are available when a log is used for
selection:

Chapter 5: Inspecting 25

C-c C-c (magit-log-select-pick)
Select the commit at point and act on it. Call magit-log-select-pick-

function with the selected commit as argument.

C-c C-k (magit-log-select-quit)
Abort selecting a commit, don’t act on any commit.

This feature is used by rebase and squash commands.

5.2.4 Reflog

Also see the git-reflog(1) manpage .

These reflog commands are available from the log popup. See Section 5.2 [Logging],
page 22.

l r (magit-reflog-current)
Display the reflog of the current branch.

l O (magit-reflog-other)
Display the reflog of a branch.

l H (magit-reflog-head)
Display the HEAD reflog.

5.3 Diffing

The status buffer contains diffs for the staged and unstaged commits, but that obviously isn’t
enough. The prefix command magit-diff-popup, on d, features several suffix commands,
which show a specific diff in a separate diff buffer.

Like other popups, the diff popup also features several arguments that can be changed
before invoking one of the suffix commands. However in case of the diff popup these ar-
guments correspond to those currently in use in the current repository’s diff buffer. When
the diff popup is invoked while no diff buffer exists for the current repository yet, then the
default value of magit-diff-arguments is used instead.

Also see the git-diff(1) manpage .

d (magit-diff-popup)
This prefix command shows the following suffix commands along with the ap-
propriate infix arguments in a popup buffer.

d d (magit-diff-dwim)
Show changes for the thing at point.

d r (magit-diff)
Show differences between two commits.

RANGE should be a range (A..B or A. . .B) but can also be a single commit.
If one side of the range is omitted, then it defaults to HEAD. If just a commit
is given, then changes in the working tree relative to that commit are shown.

If the region is active, use the revisions on the first and last line of the region.
With a prefix argument, instead of diffing the revisions, choose a revision to
view changes along, starting at the common ancestor of both revisions (i.e., use
a ". . ." range).

Chapter 5: Inspecting 26

d w (magit-diff-worktree)
Show changes between the current working tree and the HEAD commit. With
a prefix argument show changes between the working tree and a commit read
from the minibuffer.

d s (magit-diff-staged)
Show changes between the index and the HEAD commit. With a prefix argument
show changes between the index and a commit read from the minibuffer.

d u (magit-diff-unstaged)
Show changes between the working tree and the index.

d p (magit-diff-paths)
Show changes between any two files on disk.

M-x magit-diff-unpushed (magit-diff-unpushed)
Show unpushed changes.

M-x magit-diff-unpulled (magit-diff-unpulled)
Show unpulled changes.

All of the above suffix commands update the repository’s diff buffer. The diff popup also
features two commands which show differences in another buffer:

d c (magit-show-commit)
Show the commit at point. If there is no commit at point or with a prefix
argument, prompt for a commit.

d t (magit-stash-show)
Show all diffs of a stash in a buffer.

5.3.1 Refreshing diffs

The prefix command magit-diff-refresh-popup, on D, can be used to change the diff
arguments used in the current buffer, without changing which diff is shown. This works in
dedicated diff buffers, but also in the status buffer.

D (magit-diff-refresh-popup)
This prefix command shows the following suffix commands along with the ap-
propriate infix arguments in a popup buffer.

D g (magit-diff-refresh)
This suffix command sets the local diff arguments for the current buffer.

D s (magit-diff-set-default-arguments)
This suffix command sets the default diff arguments for buffers of the same type
as that of the current buffer. Other existing buffers of the same type are not
affected because their local values have already been initialized.

D w (magit-diff-save-default-arguments)
This suffix command sets the default diff arguments for buffers of the same
type as that of the current buffer, and saves the value for future sessions. Other
existing buffers of the same type are not affected because their local values have
already been initialized.

Chapter 5: Inspecting 27

D t (magit-diff-toggle-refine-hunk)
This command toggles hunk refinement on or off.

D r (magit-diff-switch-range-type)
This command converts the diff range type from "revA..revB" to
"revB. . . revA", or vice versa.

D f (magit-diff-flip-revs)
This command swaps revisions in the diff range from "revA..revB" to
"revB..revA", or vice versa.

In addition to the above popup, which allows changing any of the supported arguments,
there also exist some commands which change a particular argument.

- (magit-diff-less-context)
This command decreases the context for diff hunks by COUNT lines.

+ (magit-diff-more-context)
This command increases the context for diff hunks by COUNT lines.

0 (magit-diff-default-context)
This command resets the context for diff hunks to the default height.

The following commands quicky change what diff is being displayed without having to
using one of the diff popups.

C-c C-d (magit-diff-while-committing)
While committing, this command shows the changes that are about to be com-
mitted. While amending, invoking the command again toggles between showing
just the new changes or all the changes that will be committed.

This binding is available in the diff buffer as well as the commit message buffer.

C-c C-b (magit-go-backward)
This command moves backward in current buffer’s history.

C-c C-f (magit-go-forward)
This command moves forward in current buffer’s history.

5.3.2 Diff buffer

RET (magit-diff-visit-file)
From a diff, visit the corresponding file at the appropriate position.

When the file is already being displayed in another window of the same frame,
then just select that window and adjust point. With a prefix argument also
display in another window.

If the diff shows changes in the worktree, the index, or HEAD, then visit the
actual file. Otherwise when the diff is about an older commit, then visit the
respective blob using magit-find-file. Also see magit-diff-visit-file-

worktree, which, as the name suggests, always visits the actual file.

C-<return> (magit-diff-visit-file-worktree)
From a diff, visit the corresponding file at the appropriate position.

Chapter 5: Inspecting 28

When the file is already being displayed in another window of the same frame,
then just select that window and adjust point. With a prefix argument also
display in another window.

The actual file in the worktree is visited. The positions in the hunk headers
get less useful the "older" the changes are, and as a result, jumping to the
appropriate position gets less reliable.

Also see magit-diff-visit-file-worktree, which visits the respective blob,
unless the diff shows changes in the worktree, the index, or HEAD.

j (magit-jump-to-diffstat-or-diff)
Jump to the diffstat or diff. When point is on a file inside the diffstat section,
then jump to the respective diff section. Otherwise, jump to the diffstat section
or a child thereof.

SPC (scroll-up)
Scroll text upward.

DEL (scroll-down)
Scroll text downward.

5.3.3 Diff options

[User Option]magit-diff-show-diffstat
Whether to show diffstat in diff buffers.

[User Option]magit-diff-show-xref-buttons
Whether to show buffer history buttons in diff buffers.

[User Option]magit-diff-auto-show
Whether to automatically show the relevant diff or commit.

When this option is non-nil certain operations cause the relevant changes to be dis-
played automatically.

• commit

• stage-all

• log-oneline

• log-follow

• log-select

• blame-follow

In the event that expanding very large patches takes a long time, C-g can be used to
abort that step. This is especially useful when you would normally not look at the
changes, e.g. because you are committing some binary files.

[User Option]magit-diff-auto-show-delay
How long to delay showing or updating the revision buffer, when that happens auto-
matically (according to magit-diff-auto-show).

When holding down a key to move by several lines, then that would update that buffer
for each line on the way. To prevent that, updating the revision buffer is delayed,

Chapter 5: Inspecting 29

and this option controls for how long it is delayed. For optimal experience you might
have to adjust this delay and/or the keyboard repeat rate and delay of your graphical
environment or operating system.

[User Option]magit-diff-refine-hunk
Whether to show word-granularity differences within diff hunks.

• nil never show fine differences.

• t show fine differences for the current diff hunk only.

• all show fine differences for all displayed diff hunks.

[User Option]magit-diff-paint-whitespace
Specify where to highlight whitespace errors.

See magit-highlight-trailing-whitespace, magit-highlight-indentation.
The symbol t means in all diffs, status means only in the status buffer, and nil
means nowhere.

[User Option]magit-diff-highlight-trailing
Whether to highlight whitespace at the end of a line in diffs. Used only when
magit-diff-paint-whitespace is non-nil.

[User Option]magit-diff-highlight-indentation
Highlight the "wrong" indentation style. Used only when magit-diff-paint-

whitespace is non-nil.

The value is a list of cons cells. The car is a regular expression, and the cdr is the
value that applies to repositories whose directory matches the regular expression. If
more than one element matches, then the last element in the list applies. The default
value should therefore come first in the list.

If the value is tabs, highlight indentation with tabs. If the value is an integer,
highlight indentation with at least that many spaces. Otherwise, highlight neither.

5.3.4 Revision buffer

[User Option]magit-revision-show-diffstat
Whether to show diffstat in revision buffers.

[User Option]magit-revision-show-notes
Whether to show notes in revision buffers.

[User Option]magit-revision-show-xref-buttons
Whether to show buffer history buttons in revision buffers.

[User Option]magit-revision-insert-related-refs
Whether to show related refs in revision buffers.

Chapter 5: Inspecting 30

5.4 Ediffing

e (magit-ediff-dwim)
Compare, stage, or resolve using Ediff.

This command tries to guess what file, and what commit or range the user
wants to compare, stage, or resolve using Ediff. It might only be able to guess
either the file, or range/commit, in which case the user is asked about the other.
It might not always guess right, in which case the appropriate magit-ediff-*
command has to be used explicitly. If it cannot read the user’s mind at all,
then it asks the user for a command to run.

E (magit-ediff-popup)
This prefix command shows the following suffix commands in a popup buffer.

E r (magit-ediff-compare)
Compare two revisions of a file using Ediff.

If the region is active, use the revisions on the first and last line of the region.
With a prefix argument, instead of diffing the revisions, choose a revision to
view changes along, starting at the common ancestor of both revisions (i.e., use
a ". . ." range).

E m (magit-ediff-resolve)
Resolve outstanding conflicts in a file using Ediff, defaulting to the file at point.

Provided that the value of merge.conflictstyle is diff3, you can view the
file’s merge-base revision using / in the Ediff control buffer.

In the rare event that you want to manually resolve all conflicts, including those
already resolved by Git, use ediff-merge-revisions-with-ancestor.

E s (magit-ediff-stage)
Stage and unstage changes to a file using Ediff, defaulting to the file at point.

E u (magit-ediff-show-unstaged)
Show unstaged changes to a file using Ediff.

E i (magit-ediff-show-staged)
Show staged changes to a file using Ediff.

E w (magit-ediff-show-working-tree)
Show changes in a file between HEAD and working tree using Ediff.

E c (magit-ediff-show-commit)
Show changes to a file introduced by a commit using Ediff.

[User Option]magit-ediff-dwim-show-on-hunks
This option controls what command magit-ediff-dwim calls when point is on
uncommitted hunks. When nil, always run magit-ediff-stage. Otherwise, use
magit-ediff-show-staged and magit-ediff-show-unstaged to show staged and
unstaged changes, respectively.

[User Option]magit-ediff-quit-hook
This hook is run after quitting an Ediff session that was created using a Magit com-
mand. The hook functions are run inside the Ediff control buffer, and should not
change the current buffer.

Chapter 5: Inspecting 31

This is similar to ediff-quit-hook but takes the needs of Magit into account. The
regular ediff-quit-hook is ignored by Ediff sessions that were created using a Magit
command.

5.5 References buffer

y (magit-show-refs-popup)
List and compare references in a dedicated buffer. By default all refs are com-
pared with HEAD, but with a prefix argument this command instead acts as
a prefix command and shows the following suffix commands along with the
appropriate infix arguments in a popup buffer.

y y (magit-show-refs-head)
List and compare references in a dedicated buffer. Refs are compared with
HEAD.

y c (magit-show-refs-current)
List and compare references in a dedicated buffer. Refs are compared with the
current branch or HEAD if it is detached.

y o (magit-show-refs)
List and compare references in a dedicated buffer. Refs are compared with a
branch read from the user.

[User Option]magit-refs-show-commit-count
Whether to show commit counts in Magit-Refs mode buffers.

• all Show counts for branches and tags.

• branch Show counts for branches only.

• nil Never show counts.

The default is nil because anything else can be very expensive.

[User Option]magit-refs-show-margin
Whether to initially show the margin in refs buffers.

When non-nil the committer name and date are initially displayed in the margin of
refs buffers. The margin can be shown or hidden in the current buffer using the
command magit-toggle-margin.

The following variables control how individual refs are displayed. If you change one of
these variables (especially the "%c" part), then you should also change the others to keep
things aligned. The following %-sequences are supported:

• %a Number of commits this ref has over the one we compare to.

• %b Number of commits the ref we compare to has over this one.

• %c Number of commits this ref has over the one we compare to. For the ref which
all other refs are compared this is instead "@", if it is the current branch, or "#"

otherwise.

• %C For the ref which all other refs are compared this is "@", if it is the current branch,
or "#" otherwise. For all other refs " ".

Chapter 5: Inspecting 32

• %h Hash of this ref’s tip.

• %m Commit summary of the tip of this ref.

• %n Name of this ref.

• %u Upstream of this local branch and additional local vs. upstream information.

• %U Upstream of this local branch.

[Variable]magit-refs-local-branch-format
Format used for local branches in refs buffers.

[Variable]magit-refs-remote-branch-format
Format used for remote branches in refs buffers.

[Variable]magit-refs-tags-format
Format used for tags in refs buffers.

[Variable]magit-refs-indent-cherry-lines
Indentation of cherries in refs buffers. This should be N-1 where N is taken from
"%Nc" in the above format strings.

Everywhere in Magit RET visits the thing represented by the section at point. In almost
all cases visiting is done by showing some information in another buffer and not doing
anything else. In refs buffers RET behaves differently, and because many users have grown
accustomed to that inconsistency we are keeping it that way.

RET (magit-visit-ref)
Everywhere except in refs buffers this command behaves exactly like
magit-show-commit; it shows the commit at point in another buffer.

In refs buffers, when there is a local branch at point, then this command instead
checks out that branch. When there is a remote branch or a tag at point then
the respective commit is checked out causing HEAD to be detached.

When a prefix argument it used, then this command only focuses on the refer-
ence at point, i.e. the commit counts and cherries are updated to be relative to
that reference, but nothing is checked out.

[User Option]magit-visit-ref-create
When this is non-nil and magit-visit-ref is called inside a refs buffer, then it
"visits" the remote branch at point by creating a new local branch which tracks that
remote branch and then checking out the newly created branch.

This is not enabled by default because one has to use an extremely loose definition
of the verb "to visit" to be able to argue that creating and then checking out a new
local branch is a form of visiting a remote branch.

5.5.1 References sections

The contents of references buffers is controlled using the hook magit-refs-sections-hook.
See Section 4.4.3 [Section hooks], page 13 to learn about such hooks and how to customize
them. All of the below functions are members of the default value. Note that it makes
much less sense to customize this hook than it does for the respective hook used for the
status buffer.

Chapter 5: Inspecting 33

[User Option]magit-refs-sections-hook
Hook run to insert sections into a references buffer.

[Function]magit-insert-local-branches
Insert sections showing all local branches.

[Function]magit-insert-remote-branches
Insert sections showing all remote-tracking branches.

[Function]magit-insert-tags
Insert sections showing all tags.

5.6 Bisecting

Also see the git-bisect(1) manpage .

B (magit-bisect-popup)
This prefix command shows the following suffix commands in a popup buffer.

When bisecting is not in progress, then the popup buffer features the following com-
mands.

B s (magit-bisect-start)
Start a bisect session.

Bisecting a bug means to find the commit that introduced it. This command
starts such a bisect session by asking for a known good and a bad commit.

B u (magit-bisect-run)
Bisect automatically by running commands after each step.

When bisecting is in progress, then the popup buffer features these commands instead.

B b (magit-bisect-bad)
Mark the current commit as bad. Use this after you have asserted that the
commit does contain the bug in question.

B g (magit-bisect-good)
Mark the current commit as good. Use this after you have asserted that the
commit does not contain the bug in question.

B k (magit-bisect-skip)
Skip the current commit. Use this if for some reason the current commit is not
a good one to test. This command lets Git choose a different one.

B r (magit-bisect-reset)
After bisecting, cleanup bisection state and return to original HEAD.

5.7 Visiting blobs

M-x magit-find-file (magit-find-file)
View FILE from REV. Switch to a buffer visiting blob REV:FILE, creating one
if none already exists.

M-x magit-find-file-other-window (magit-find-file-other-window)
View FILE from REV, in another window. Like magit-find-file, but create
a new window or reuse an existing one.

Chapter 5: Inspecting 34

5.8 Blaming

Also see the git-blame(1) manpage .

M-x magit-blame (magit-blame)
Display edit history of FILE up to REVISION.

Interactively blame the file being visited in the current buffer. If the buffer
visits a revision of that file, then blame up to that revision. Otherwise, blame
the file’s full history, including uncommitted changes.

If Magit-Blame mode is already turned on then blame recursively, by visit-
ing REVISION:FILE (using magit-find-file), where revision is the revision
before the revision that added the lines at point.

ARGS is a list of additional arguments to pass to git blame; only arguments
available from magit-blame-popup should be used.

M-x magit-blame-popup (magit-blame-popup)
This prefix command shows the following suffix commands along with the ap-
propriate infix arguments in a popup buffer.

RET (magit-show-commit)
Show the commit at point. If there is no commit at point or with a prefix
argument, prompt for a commit.

SPC (magit-diff-show-or-scroll-up)
Update the commit or diff buffer for the thing at point.

Either show the commit or stash at point in the appropriate buffer, or if that
buffer is already being displayed in the current frame and contains information
about that commit or stash, then instead scroll the buffer up. If there is no
commit or stash at point, then prompt for a commit.

DEL (magit-diff-show-or-scroll-down)
Update the commit or diff buffer for the thing at point.

Either show the commit or stash at point in the appropriate buffer, or if that
buffer is already being displayed in the current frame and contains information
about that commit or stash, then instead scroll the buffer down. If there is no
commit or stash at point, then prompt for a commit.

n (magit-blame-next-chunk)
Move to the next chunk.

N (magit-blame-next-chunk-same-commit)
Move to the next chunk from the same commit.

p (magit-blame-previous-chunk)
Move to the previous chunk.

P (magit-blame-previous-chunk-same-commit)
Move to the previous chunk from the same commit.

q (magit-blame-quit)
Turn off Magit-Blame mode. If the buffer was created during a recursive blame,
then also kill the buffer.

Chapter 5: Inspecting 35

M-w (magit-blame-copy-hash)
Save the hash of the current chunk’s commit to the kill ring.

t (magit-blame-toggle-headings)
Show or hide blame chunk headings.

[User Option]magit-blame-heading-format
Format string used for blame headings.

[User Option]magit-blame-time-format
Format string used for time strings in blame headings.

[User Option]magit-blame-show-headings
Whether to initially show blame block headings. The headings can also be toggled
locally using command magit-blame-toggle-headings.

[User Option]magit-blame-goto-chunk-hook
Hook run by magit-blame-next-chunk and magit-blame-previous-chunk.

Chapter 6: Manipulating 36

6 Manipulating

6.1 Repository setup

M-x magit-init (magit-init)
This command initializes a repository and then shows the status buffer for the
new repository.

If the directory is below an existing repository, then the user has to confirm
that a new one should be created inside. If the directory is the root of the
existing repository, then the user has to confirm that it should be reinitialized.

M-x magit-clone (magit-clone)
This command clones a repository and then shows the status buffer for the new
repository.

The user is queried for a remote url and a local directory.

6.2 Staging and unstaging

Like Git, Magit can of course stage and unstage complete files. Unlike Git, it also allows
users to gracefully un-/stage individual hunks and even just part of a hunk. To stage
individual hunks and parts of hunks using Git directly, one has to use the very modal and
rather clumsy interface of a git add --interactive session.

With Magit, on the other hand, one can un-/stage individual hunks by just moving point
into the respective section inside a diff displayed in the status buffer or a separate diff buffer
and typing s or u. To operate on just parts of a hunk, mark the changes that should be
un-/staged using the region and then press the same key that would be used to un-/stage.
To stage multiple files or hunks at once use a region that starts inside the heading of such
a section and ends inside the heading of a sibling section of the same type.

Besides staging and unstaging, Magit also provides several other "apply variants" that
can also operate on a file, multiple files at once, a hunk, multiple hunks at once, and on
parts of a hunk. These apply variants are described in the next section.

s (magit-stage)
Add the change at point to the staging area.

S (magit-stage-modified)
Stage all changes to files modified in the worktree. Stage all new content of
tracked files and remove tracked files that no longer exist in the working tree
from the index also. With a prefix argument also stage previously untracked
(but not ignored) files.

u (magit-unstage)
Remove the change at point from the staging area.

U (magit-reset-index)
Reset the index to some commit. The commit is read from the user and defaults
to the commit at point. If there is no commit at point, then it defaults to HEAD.

So U RET with no commit at point does the inverse of S (or actually S yes RET),
i.e. "unstage all staged changes". If you would rather use a command which
always does just that, then rebind U to magit-unstage-all.

Chapter 6: Manipulating 37

M-x magit-unstage-all (magit-unstage-all)
Remove all changes from the staging area.

To stage a smaller unit than a range of lines, similar to git add --patch followed by e

would do, then you can use magit-ediff-stage to do so.

6.2.1 Staging from file-visiting buffers

Fine-grained un-/staging has to be done from the status or a diff buffer, but it’s also possible
to un-/stage all changes made to the file visited in the current buffer right from inside that
buffer.

M-x magit-stage-file (magit-stage-file)
When invoked inside a file-visiting buffer, then stage all changes to that file.
In a Magit buffer, stage the file at point if any. Otherwise prompt for a file to
be staged. With a prefix argument always prompt the user for a file, even in a
file-visiting buffer or when there is a file section at point.

M-x magit-unstage-file (magit-unstage-file)
When invoked inside a file-visiting buffer, then unstage all changes to that file.
In a Magit buffer, unstage the file at point if any. Otherwise prompt for a file
to be unstaged. With a prefix argument always prompt the user for a file, even
in a file-visiting buffer or when there is a file section at point.

6.3 Applying

Magit provides several "apply variants": stage, unstage, discard, reverse, and "regular
apply". At least when operating on a hunk they are all implemented using git apply,
which is why they are called "apply variants".

• Stage. Apply a change from the working tree to the index. The change also remains
in the working tree.

• Unstage. Remove a change from the index. The change remains in the working tree.

• Discard. On a staged change, remove it from the working tree and the index. On an
unstaged change, remove it from the working tree only.

• Reverse. Reverse a change in the working tree. Both committed and staged changes
can be reversed. Unstaged changes cannot be reversed. Discard them instead.

• Apply. Apply a change to the working tree. Both committed and staged changes can
be applied. Unstaged changes cannot be applied - as they already have been applied.

The previous section described the staging and unstaging commands. What follows are
the commands which implement the remaining apply variants.

a (magit-apply)
Apply the change at point to the working tree.

k (magit-discard)
Remove the change at point from the working tree.

v (magit-reverse)
Reverse the change at point in the working tree.

With a prefix argument all apply variants attempt a 3-way merge when appropriate (i.e.
when git apply is used internally).

Chapter 6: Manipulating 38

6.4 Committing

When the user initiates a commit, Magit calls git commit without any arguments, so Git
has to get it from the user. It creates the file .git/COMMIT_EDITMSG and then opens that file
in an editor. Magit arranges for that editor to be the Emacsclient. Once the user finishes
the editing session, the Emacsclient exits and Git creates the commit using the file’s content
as message.

6.4.1 Initiating a commit

Also see the git-commit(1) manpage .

c (magit-commit-popup)
This prefix command shows the following suffix commands along with the ap-
propriate infix arguments in a popup buffer.

c c (magit-commit)
Create a new commit on HEAD. With a prefix argument amend to the commit
at HEAD instead.

c a (magit-commit-amend)
Amend the last commit.

c e (magit-commit-extend)
Amend the last commit, without editing the message. With a prefix argument
change the committer date. The option magit-commit-extend-override-

date can be used to inverse the meaning of the prefix argument.

c w (magit-commit-reword)
Reword the last commit, ignoring staged changes.

With a prefix argument change the committer date. The option magit-commit-

rewrite-override-date can be used to inverse the meaning of the prefix ar-
gument.

Non-interactively respect the optional OVERRIDE-DATE argument and ignore
the option.

c f (magit-commit-fixup)
Create a fixup commit.

With a prefix argument the target commit has to be confirmed. Otherwise the
commit at point may be used without confirmation depending on the value of
option magit-commit-squash-confirm.

c F (magit-commit-instant-fixup)
Create a fixup commit and instantly rebase.

c s (magit-commit-squash)
Create a squash commit, without editing the squash message.

With a prefix argument the target commit has to be confirmed. Otherwise the
commit at point may be used without confirmation depending on the value of
option magit-commit-squash-confirm.

c S (magit-commit-instant-squash)
Create a squash commit and instantly rebase.

Chapter 6: Manipulating 39

c A (magit-commit-augment)
Create a squash commit, editing the squash message.

With a prefix argument the target commit has to be confirmed. Otherwise the
commit at point may be used without confirmation depending on the value of
option magit-commit-squash-confirm.

[User Option]magit-commit-ask-to-stage
Whether to ask to stage everything when committing and nothing is staged.

[User Option]magit-commit-extend-override-date
Whether using magit-commit-extend changes the committer date.

[User Option]magit-commit-reword-override-date
Whether using magit-commit-reword changes the committer date.

[User Option]magit-commit-squash-confirm
Whether the commit targeted by squash and fixup has to be confirmed. When non-
nil then the commit at point (if any) is used as default choice. Otherwise it has to
be confirmed. This option only affects magit-commit-squash and magit-commit-

fixup. The "instant" variants always require confirmation because making an error
while using those is harder to recover from.

6.4.2 Editing commit messages

After initiating a commit as described in the previous section, two new buffers appear.
One shows the changes that are about to committed, while the other is used to write the
message. All regular editing commands are available in the commit message buffer. This
section only describes the additional commands.

Commit messages are edited in an edit session - in the background Git is waiting for
the editor, in our case the Emacsclient, to save the commit message in a file (in most cases
.git/COMMIT_EDITMSG) and then return. If the Emacsclient returns with a non-zero exit
status then Git does not create the commit. So the most important commands are those
for finishing and aborting the commit.

C-c C-c (with-editor-finish)
Finish the current editing session by returning with exit code 0. Git then creates
the commit using the message it finds in the file.

C-c C-k (with-editor-cancel)
Cancel the current editing session by returning with exit code 1. Git then
cancels the commit, but leaves the file untouched.

In additon to being used by Git, these messages may also be stored in a ring that persists
until Emacs is closed. By default the message is stored at the beginning and the end of an
edit session (regardless of whether the session is finished successfully or was canceled). It
is sometimes useful to bring back messages from that ring.

C-s M-s (git-commit-save-message)
Save the current buffer content to the commit message ring.

Chapter 6: Manipulating 40

M-p (git-commit-prev-message)
Cycle backward through the commit message ring, after saving the current
message to the ring. With a numeric prefix ARG, go back ARG comments.

M-n (git-commit-next-message)
Cycle forward through the commit message ring, after saving the current mes-
sage to the ring. With a numeric prefix ARG, go back ARG comments.

By default the diff for the changes that are about to be committed are automatically
shown when invoking the commit. When amending to an existing commit it may be useful
to show either the changes that are about to be added to that commit or to show those
changes together with those that are already committed.

C-c C-d (magit-diff-while-committing)
While committing, show the changes that are about to be committed. While
amending, invoking the command again toggles between showing just the new
changes or all the changes that will be committed.

Some projects use pseudo headers in commit messages. Magit colorizes such headers
and provides some commands to insert such headers.

[User Option]git-commit-known-pseudo-headers
A list of Git pseudo headers to be highlighted.

C-c C-a (git-commit-ack)
Insert a header acknowledging that you have looked at the commit.

C-c C-r (git-commit-review)
Insert a header acknowledging that you have reviewed the commit.

C-c C-s (git-commit-signoff)
Insert a header to sign off the commit.

C-c C-t (git-commit-test)
Insert a header acknowledging that you have tested the commit.

C-c C-o (git-commit-cc)
Insert a header mentioning someone who might be interested.

C-c C-p (git-commit-reported)
Insert a header mentioning the person who reported the issue being fixed by
the commit.

C-c C-i (git-commit-suggested)
Insert a header mentioning the person who suggested the change.

git-commit-mode is a minor mode that is only used to establish the above key bindings.
This allows using an arbitrary major mode when editing the commit message. It’s even
possible to use a different major mode in different repositories, which is useful when different
projects impose different commit message conventions.

[User Option]git-commit-major-mode
The value of this option is the major mode used to edit Git commit messages.

Chapter 6: Manipulating 41

Because git-commit-mode is a minor mode, we don’t use its mode hook to setup the
buffer, except for the key bindings. All other setup happens in the function git-commit-

setup, which among other things runs the hook git-commit-setup-hook. The following
functions are suitable for that hook.

[User Option]git-commit-setup-hook
Hook run at the end of git-commit-setup.

[Function]magit-revert-buffers &optional force
Revert unmodified file-visiting buffers of the current repository.

If either magit-revert-buffers is non-nil and inhibit-magit-revert is nil, or if
optional FORCE is non-nil, then revert all unmodified buffers that visit files being
tracked in the current repository.

[Function]git-commit-save-message
Save the current buffer content to the commit message ring.

[Function]git-commit-setup-changelog-support
After this function is called, ChangeLog entries are treated as paragraphs.

[Function]git-commit-turn-on-auto-fill
Turn on auto-fill-mode and set fill-column to the value of git-commit-fill-
column.

[Function]git-commit-turn-on-flyspell
Turn on Flyspell mode. Also prevent comments from being checked and finally check
current non-comment text.

[Function]git-commit-propertize-diff
Propertize the diff shown inside the commit message buffer. Git inserts such diffs into
the commit message template when the --verbose argument is used. Magit’s commit
popup by default does not offer that argument because the diff that is shown in a
separate buffer is more useful. But some users disagree, which is why this function
exists.

[Function]with-editor-usage-message
Show usage information in the echo area.

Magit also helps with writing good commit messages by complaining when certain rules
are violated.

[User Option]git-commit-summary-max-length
The intended maximal length of the summary line of commit messages. Characters
beyond this column are colorized to indicate that this preference has been violated.

[User Option]git-commit-fill-column
Column beyond which automatic line-wrapping should happen in commit message
buffers.

Chapter 6: Manipulating 42

[User Option]git-commit-finish-query-functions
List of functions called to query before performing commit.

The commit message buffer is current while the functions are called. If any of them
returns nil, then the commit is not performed and the buffer is not killed. The user
should then fix the issue and try again.

The functions are called with one argument. If it is non-nil then that indicates that
the user used a prefix argument to force finishing the session despite issues. Functions
should usually honor this wish and return non-nil.

[Function]git-commit-check-style-conventions
Check for violations of certain basic style conventions. For each violation ask the user
if she wants to proceed anyway. This makes sure the summary line isn’t too long and
that the second line is empty.

To show no diff while committing remove magit-commit-diff from server-switch-

hook.

6.5 Branching

Also see the git-branch(1) manpage and the git-checkout(1) manpage .

b (magit-branch-popup)
This prefix command shows the following suffix commands along with the ap-
propriate infix arguments in a popup buffer.

b b (magit-checkout)
Checkout a revision read in the minibuffer and defaulting to the branch or ar-
bitrary revision at point. If the revision is a local branch then that becomes the
current branch. If it is something else then HEAD becomes detached. Checkout
fails if the working tree or the staging area contain changes.

b c (magit-branch)
Create a new branch. The user is asked for a branch or arbitrary revision to
use as the starting point of the new branch. When a branch name is provided,
then that becomes the upstream branch of the new branch. The name of the
new branch is also read in the minibuffer.

b B (magit-branch-and-checkout)
This command creates a new branch like magit-branch, but then also checks
it out.

b d (magit-branch-delete)
Delete one or multiple branches. If the region marks multiple branches, then
offer to delete those. Otherwise, prompt for a single branch to be deleted,
defaulting to the branch at point.

b u (magit-branch-set-upstream)
Change the upstream branch of a branch. Both branches are read in the mini-
buffer, while providing reasonable defaults.

b U (magit-branch-unset-upstream)
Unset the upstream branch of a branch read in the minibuffer and defaulting
to the branch at point or the current branch.

Chapter 6: Manipulating 43

b r (magit-branch-rename)
Rename a branch. The branch and the new name are read in the minibuffer.
With prefix argument the branch is renamed even if that name conflicts with
an existing branch.

b e (magit-branch-edit-description)
Edit the description of a branch. The branch is read in the minibuffer defaulting
to the branch at point or the current branch. The description is edited in a
regular buffer similar to how commit messages are edited.

[User Option]magit-branch-read-upstream-first
When creating a branch, whether to read the upstream branch before the name of
the branch that is to be created.

6.6 Merging

Also see the git-merge(1) manpage .

m (magit-merge-popup)
This prefix command shows the following suffix commands along with the ap-
propriate infix arguments in a popup buffer.

When no merge is in progress, then the popup buffer features the following commands.

m m (magit-merge)
Merge another branch or an arbitrary revision into the current branch. The
branch or revision to be merged is read in the minibuffer and defaults to the
one at point.

Unless there are conflicts or a prefix argument is used, the resulting merge
commit uses a generic commit message, and the user does not get a chance to
inspect or change it before the commit is created. With a prefix argument this
does not actually create the merge commit, which makes it possible to inspect
how conflicts were resolved and to adjust the commit message.

m e (magit-merge-editmsg)
Merge another branch or an arbitrary revision into the current branch and open
a commit message buffer, so that the user can make adjustments. The commit
is not actually created until the user finishes with C-c C-c.

m n (magit-merge-nocommit)
Merge another branch or an arbitrary revision into the current branch, but do
not actually create the commit. The user can then further adjust the merge,
even when automatic conflict resolution succeeded and/or adjust the commit
message.

m p (magit-merge-preview)
Preview result of merging another branch or an arbitrary revision into the
current branch.

When a merge is in progress, then the popup buffer features these commands instead.

m m (magit-merge)
After resolving conflicts, proceed with the merge. If there are still conflicts,
then this fails.

Chapter 6: Manipulating 44

m a (magit-merge-abort)
Abort the current merge operation.

6.7 Rebasing

Also see the git-rebase(1) manpage .

r (magit-rebase-popup)
This prefix command shows the following suffix commands along with the ap-
propriate infix arguments in a popup buffer.

When no rebase is in progress, then the popup buffer features the following commands.

r r (magit-rebase)
Start a non-interactive rebase sequence. All commits not in UPSTREAM are
rebased.

r o (magit-rebase-subset)
Start a non-interactive rebase sequence with commits from START to HEAD

onto NEWBASE. START has to be selected from a list of recent commits.

r e (magit-rebase-interactive)
Start an interactive rebase sequence.

r l (magit-rebase-unpushed)
Start an interactive rebase sequence of unpushed commits. This is like
magit-rebase-interactive, but if the upstream of the current branch is
configured, then all commits since the merge-base are rebased. If there is no
upstream or no merge-base, then the user has to select the first commit to be
rebased like for magit-rebase-interactive.

r f (magit-rebase-autosquash)
Combine squash and fixup commits with their intended targets.

r s (magit-rebase-edit-commit)
Edit a single older commit using rebase.

r w (magit-rebase-reword-commit)
Reword a single older commit using rebase.

When a rebase is in progress, then the popup buffer features these commands instead.

r r (magit-rebase-continue)
Restart the current rebasing operation.

r s (magit-rebase-skip)
Skip the current commit and restart the current rebase operation.

r e (magit-rebase-edit)
Edit the todo list of the current rebase operation.

r a (magit-rebase-abort)
Abort the current rebase operation, restoring the original branch.

Chapter 6: Manipulating 45

6.7.1 Editing rebase sequences

C-c C-c (with-editor-finish)
Finish the current editing session by returning with exit code 0. Git then creates
the commit using the message it finds in the file.

C-c C-k (with-editor-cancel)
Cancel the current editing session by returning with exit code 1. Git then
cancels the commit, but leaves the file untouched.

RET (git-rebase-show-commit)
Show the commit on the current line in another buffer and select that buffer.

SPC (magit-diff-show-or-scroll-up)
Show the commit on the current line in another buffer without selecting that
buffer. If the revision buffer is already visible in another window of the current
frame, then instead scroll that window up.

DEL (magit-diff-show-or-scroll-down)
Show the commit on the current line in another buffer without selecting that
buffer. If the revision buffer is already visible in another window of the current
frame, then instead scroll that window down.

p (git-rebase-backward-line)
Move to previous line.

n (forward-line)
Move to next line.

M-p (git-rebase-move-line-up)
Move the current commit (or command) up.

M-n (git-rebase-move-line-down)
Move the current commit (or command) down.

r (git-rebase-reword)
Edit message of commit on current line.

e (git-rebase-edit)
Stop at the commit on the current line.

s (git-rebase-squash)
Meld commit on current line into previous commit, and edit message.

f (git-rebase-fixup)
Meld commit on current line into previous commit, discarding the current com-
mit’s message.

k (git-rebase-kill-line)
Kill the current action line.

c (git-rebase-pick)
Use commit on current line.

x (git-rebase-exec)
Insert a shell command to be run after the proceeding commit.

Chapter 6: Manipulating 46

If there already is such a command on the current line, then edit that instead.
With a prefix argument insert a new command even when there already is one
on the current line. With empty input remove the command on the current
line, if any.

y (git-rebase-insert)
Read an arbitrary commit and insert it below current line.

C-x u (git-rebase-undo)
Undo some previous changes. Like undo but works in read-only buffers.

[User Option]git-rebase-auto-advance
Whether to move to next line after changing a line.

[User Option]git-rebase-show-instructions
Whether to show usage instructions inside the rebase buffer.

[User Option]git-rebase-confirm-cancel
Whether confirmation is required to cancel.

6.7.2 Rebase sequence log

While a rebase sequence is in progress, the status buffer features a section which lists the
commits that have already been applied as well as the commits that still have to be applied.

The commits are split in two halves. When rebase stops at a commit, either because the
user has to deal with a conflict or explicitly requested that rebase stops at that commit,
then point is placed on the commit that separates the two groups, i.e. on HEAD. The
commits above it have not been applied yet, while it and the commits below it have already
been applied. In between these two groups or applied and yet-to-be applied commits, there
sometimes is a commit which has been dropped.

Each commit is prefixed with a word and these words are additionally shown in different
colors to indicate the status of the commits.

The following colors are used:

• Yellow commits have not been applied yet.

• Gray commits have already been applied.

• The blue commit is the HEAD commit.

• The green commit is the commit the rebase sequence stopped at. If this is the same
commit as HEAD (e.g. because you haven’t done anything yet after rebase stopped at
the commit, then this commit is shown in blue, not green. There can only be a green
and a blue commit at the same time, if you create one or more new commits after
rebase stops at a commit.

• Red commits have been dropped. They are shown for reference only, e.g. to make it
easier to diff.

Of course these colors are subject to the color-theme in use.

The following words are used:

• Commits prefixed with pick, reword, edit, squash, and fixup have not been applied
yet. These words have the same meaning here as they do in the buffer used to edit the
rebase sequence. See Section 6.7.1 [Editing rebase sequences], page 45.

Chapter 6: Manipulating 47

• The commit prefixed with onto is the commit on top of which all the other commits are
being re-applied. Like the commits that have already been re-applied, it is reachable
from HEAD, but unlike those it has not actually been re-applied during the current
session - it wasn’t touched at all.

• Commits prefixed with done have already been re-applied. Not all commits that have
already been applied are prefixed with this word, though.

• When a commit is prefixed with void, then that indicates that Magit knows for sure
that all the changes in that commit have been applied using several new commits. This
commit is no longer reachable from HEAD, and it also isn’t one of the commits that will
be applied when resuming the session.

• When a commit is prefixed with join, then that indicates that the rebase sequence
stopped at that commit due to a conflict - you now have to join (merge) the changes
with what has already been applied. In a sense this is the commit rebase stopped at,
but while its effect is already in the index and in the worktree (with conflict markers),
the commit itself has not actually been applied yet (it isn’t the HEAD). So it is shown
in yellow, like the other commits that still have to be applied.

• When a commit is prefixed with goal, same, or work, then that indicates that you
reset to an earlier commit (and that this commit therefore is no longer reachable from
HEAD), but that it might still be possible to create a new commit with the exact same
tree or at least the same patch-id, without manually editing any file. Or at the very
least that there are some uncommitted remaining, which may or may not originate
from that commit.

• When a commit is prefixed with goal, then that indicates that it is still possible to
create a commit with the exact same tree (the "goal") without manually editing
a file, by simply committing the index (or, provided nothing is already staged, by
staging all unstaged changes and then committing that). This is the case when
the original tree exists in the index or worktree in untainted form.

• When a commit is prefixed with same, then that indicates that it is no longer
possible to create a commit with the exact same tree, but that it is still possible
to create a commit with the same patch-id. This would be the case if you created
a new commit with other changes, but the changes from the original commit still
exist in the index and/or working tree in untainted form.

• When a commit is prefixed with work, then that indicates that you are working
with the changes from that commit after resetting to an earlier commit. There are
changes in the index and/or working tree and some of them likely originate from
that commit.

• When a commit is prefixed with poof or gone, then that indicates that you reset to an
earlier commit (and that this commit therefore is no longer reachable from HEAD), and
that there are no uncommitted changes remaining which might allow you to create a
new commit with the same tree or at least the same patch-id.

• When a commit is prefixed with poof, then that indicates that it is no longer
reachable from HEAD, but that it has been replaced with one or more commits,
which together have the exact same effect.

• When a commit is prefixed with gone, then that indicates that it is no longer
reachable from HEAD and that we also cannot determine whether its changes are

Chapter 6: Manipulating 48

still in effect in one or more new commits. They might be, but if so, then there
must also be other changes which makes it impossible to know for sure.

Do not worry if you do not fully understand the above. That’s okay, you will acquire a
good enough understanding through practice.

For other sequence operations such as cherry-picking, a similar section is displayed, but
they lack some of the features described below, due to limitations in the git commands used
to implement them. Most importantly these sequences only support "picking" a commit
but not other actions such as "rewording", and they do not keep track of the commits which
have already been applied.

6.8 Cherry picking

Also see the git-cherry-pick(1) manpage .

A (magit-cherry-pick-popup)
This prefix command shows the following suffix commands along with the ap-
propriate infix arguments in a popup buffer.

When no cherry-pick or revert is in progress, then the popup buffer features the following
commands.

A A (magit-cherry-pick)
Cherry-pick a commit. Prompt for a commit, defaulting to the commit at
point. If the region selects multiple commits, then pick all of them, without
prompting.

A a (magit-cherry-apply)
Apply the changes in a commit to the working tree, but do not commit them.
Prompt for a commit, defaulting to the commit at point. If the region selects
multiple commits, then apply all of them, without prompting.

This command also has a top-level binding, which can be invoked without using
the popup by typing a at the top-level.

When a cherry-pick or revert is in progress, then the popup buffer features these com-
mands instead.

A A (magit-sequence-continue)
Resume the current cherry-pick or revert sequence.

A s (magit-sequence-skip)
Skip the stopped at commit during a cherry-pick or revert sequence.

A a (magit-sequence-abort)
Abort the current cherry-pick or revert sequence. This discards all changes
made since the sequence started.

6.8.1 Reverting

V (magit-revert-popup)
This prefix command shows the following suffix commands along with the ap-
propriate infix arguments in a popup buffer.

Chapter 6: Manipulating 49

When no cherry-pick or revert is in progress, then the popup buffer features the following
commands.

V V (magit-revert)
Revert a commit by creating a new commit. Prompt for a commit, defaulting
to the commit at point. If the region selects multiple commits, then revert all
of them, without prompting.

V v (magit-revert-no-commit)
Revert a commit by applying it in reverse to the working tree. Prompt for
a commit, defaulting to the commit at point. If the region selects multiple
commits, then revert all of them, without prompting.

When a cherry-pick or revert is in progress, then the popup buffer features these com-
mands instead.

V A (magit-sequence-continue)
Resume the current cherry-pick or revert sequence.

V s (magit-sequence-skip)
Skip the stopped at commit during a cherry-pick or revert sequence.

V a (magit-sequence-abort)
Abort the current cherry-pick or revert sequence. This discards all changes
made since the sequence started.

6.9 Resetting

Also see the git-reset(1) manpage .

x (magit-reset)
Reset the head and index to some commit read from the user and defaulting to
the commit at point. The working tree is kept as-is. With a prefix argument
also reset the working tree.

U (magit-reset-index)
Reset the index to some commit read from the user and defaulting to the commit
at point. Keep the HEAD and working tree as-is, so if the commit refers to the
HEAD, then this effectively unstages all changes.

M-x magit-reset-head (magit-reset-head)
Reset the HEAD and index to some commit read from the user and defaulting
to the commit at point. The working tree is kept as-is.

M-x magit-reset-soft (magit-reset-soft)
Reset the HEAD to some commit read from the user and defaulting to the commit
at point. The index and the working tree are kept as-is.

M-x magit-reset-hard (magit-reset-hard)
Reset the HEAD, index, and working tree to some commit read from the user
and defaulting to the commit at point.

Chapter 6: Manipulating 50

6.10 Stashing

Also see the git-stash(1) manpage .

z (magit-stash-popup)
This prefix command shows the following suffix commands along with the ap-
propriate infix arguments in a popup buffer.

z z (magit-stash)
Create a stash of the index and working tree. Untracked files are included ac-
cording to popup arguments. One prefix argument is equivalent to --include-

untracked while two prefix arguments are equivalent to --all.

z i (magit-stash-index)
Create a stash of the index only. Unstaged and untracked changes are not
stashed.

z w (magit-stash-worktree)
Create a stash of the working tree only. Untracked files are included according to
popup arguments. One prefix argument is equivalent to --include-untracked

while two prefix arguments are equivalent to --all.

z x (magit-stash-keep-index)
Create a stash of the index and working tree, keeping index intact. Untracked
files are included according to popup arguments. One prefix argument is equiv-
alent to --include-untracked while two prefix arguments are equivalent to
--all.

z Z (magit-snapshot)
Create a snapshot of the index and working tree. Untracked files are included ac-
cording to popup arguments. One prefix argument is equivalent to --include-

untracked while two prefix arguments are equivalent to --all.

z I (magit-snapshot-index)
Create a snapshot of the index only. Unstaged and untracked changes are not
stashed.

z W (magit-snapshot-worktree)
Create a snapshot of the working tree only. Untracked files are included ac-
cording to popup arguments. One prefix argument is equivalent to --include-

untracked while two prefix arguments are equivalent to --all-.

z a (magit-stash-apply)
Apply a stash to the working tree. Try to preserve the stash index. If that fails
because there are staged changes, apply without preserving the stash index.

z p (magit-stash-pop)
Apply a stash to the working tree and remove it from stash list. Try to preserve
the stash index. If that fails because there are staged changes, apply without
preserving the stash index and forgo removing the stash.

z d (magit-stash-drop)
Remove a stash from the stash list. When the region is active, offer to drop all
contained stashes.

Chapter 6: Manipulating 51

z l (magit-stash-list)
List all stashes in a buffer.

z v (magit-stash-show)
Show all diffs of a stash in a buffer.

z b (magit-stash-branch)
Create and checkout a new BRANCH from STASH.

k (magit-stash-clear)
Remove all stashes saved in REF’s reflog by deleting REF.

Chapter 7: Transferring 52

7 Transferring

7.1 Remotes

Also see the git-remote(1) manpage .

M (magit-remote-popup)
This prefix command shows the following suffix commands along with the ap-
propriate infix arguments in a popup buffer.

M a (magit-remote-add)
Add a remote and fetch it. The remote name and url are read in the minibuffer.

M r (magit-remote-rename)
Rename a remote. Both the old and the new names are read in the minibuffer.

M u (magit-remote-set-url)
Change the url of a remote. Both the remote and the new url are read in the
minibuffer.

M k (magit-remote-remove)
Delete a remote, read from the minibuffer.

7.2 Fetching

Also see the git-fetch(1) manpage .

f (magit-fetch-popup)
This prefix command shows the following suffix commands along with the ap-
propriate infix arguments in a popup buffer.

f f (magit-fetch-current)
Fetch from the upstream repository of the current branch. If HEAD is detached
or if the upstream is not configured, then read the remote.

f o (magit-fetch)
Fetch from another repository.

f a (magit-fetch-all)
Fetch from all configured remotes.

f m (magit-submodule-fetch)
Fetch all submodules. With a prefix argument fetch all remotes or all submod-
ules.

7.3 Pulling

Also see the git-pull(1) manpage .

F (magit-pull-popup)
This prefix command shows the following suffix commands along with the ap-
propriate infix arguments in a popup buffer.

F F (magit-pull-current)
Fetch and merge into current branch.

Chapter 7: Transferring 53

F o (magit-pull)
Fetch from another repository and merge a fetched branch.

7.4 Pushing

Also see the git-push(1) manpage .

P (magit-push-popup)
This prefix command shows the following suffix commands along with the ap-
propriate infix arguments in a popup buffer.

P P (magit-push-current)
Push the current branch to its upstream branch. If the upstream isn’t set, then
read the remote branch.

P o (magit-push)
Push a branch to its upstream branch. If the upstream isn’t set, then read the
remote branch.

P e (magit-push-elsewhere)
Push a branch or commit to some remote branch. Read the local and remote
branch.

P Q (magit-push-quickly)
Push the current branch to some remote. When the Git variable
magit.pushRemote is set, then push to that remote. If that variable is
undefined or the remote does not exist, then push to "origin". If that also
doesn’t exist then raise an error. The local branch is pushed to the remote
branch with the same name.

P i (magit-push-implicitly)
Push without explicitly specifing what to push. This runs git push -v. What
is being pushed depends on various Git variables as described in the the git-
push(1) manpage and the git-config(1) manpage

manpages.

P m (magit-push-matching)
Push all matching branches to another repository. If multiple remotes exit,
then read one from the user. If just one exists, use that without requiring
confirmation.

P t (magit-push-tags)
Push all tags to another repository. If only one remote exists, then push to
that. Otherwise prompt for a remote, offering the remote configured for the
current branch as default.

P T (magit-push-tag)
Push a tag to another repository.

[User Option]magit-push-always-verify
Whether certain commands require verification before pushing.

Chapter 7: Transferring 54

Starting with v2.1.0 some of the push commands are supposed to push to the config-
ured upstream branch without requiring user confirmation or offering to push some-
where else.

This has taken a few users by surprise, and they suggested that we force users to
opt-in to this behavior. Unfortunately adding this option means that now other users
will complain about us needlessly forcing them to set an option. This is an attempt to
make everyone happy and like all such attempts it is prone to fail. Before complaining
about having to set this option, please consider that other users are less experienced
than you and have different needs.

You should set the value of this option to nil, causing all push commands to behave
as intended. But first read the description of each command above.

7.5 Creating and sending patches

W (magit-patch-popup)
This prefix command shows the following suffix commands along with the ap-
propriate infix arguments in a popup buffer.

W p (magit-format-patch)
Create patches for a set commits. If the region marks commits, then create
patches for those. Otherwise prompt for a range or a single commit, defaulting
to the commit at point.

W r (magit-request-pull)
Request that upstream pulls from your public repository.

7.6 Applying patches

Also see the git-am(1) manpage .

w (magit-am-popup)
This prefix command shows the following suffix commands along with the ap-
propriate infix arguments in a popup buffer.

w w (magit-am-apply-patches)
Apply one or more patches. If the region marks files, then apply those patches.
Otherwise read a file name in the minibuffer defaulting to the file at point.

w m (magit-am-apply-maildir)
Apply the patches from a maildir.

w w (magit-am-continue)
Resume the current patch applying sequence.

w s (magit-am-skip)
Skip the stopped at patch during a patch applying sequence.

w a (magit-am-abort)
Abort the current patch applying sequence. This discards all changes made
since the sequence started.

Chapter 8: Miscellaneous 55

8 Miscellaneous

8.1 Tagging

Also see the git-tag(1) manpage .

t (magit-tag-popup)
This prefix command shows the following suffix commands along with the ap-
propriate infix arguments in a popup buffer.

t t (magit-tag)
Create a new tag with the given NAME at REV. With a prefix argument
annotate the tag.

t k (magit-tag-delete)
Delete one or more tags. If the region marks multiple tags (and nothing else),
then offer to delete those. Otherwise, prompt for a single tag to be deleted,
defaulting to the tag at point.

t p (magit-tag-prune)
Offer to delete tags missing locally from REMOTE, and vice versa.

8.2 Notes

Also see the git-notes(1) manpage .

T (magit-notes-popup)
This prefix command shows the following suffix commands along with the ap-
propriate infix arguments in a popup buffer.

T T (magit-notes-edit)
Edit the note attached to a commit, defaulting to the commit at point.

By default use the value of Git variable core.notesRef or
"refs/notes/commits" if that is undefined.

T r (magit-notes-remove)
Remove the note attached to a commit, defaulting to the commit at point.

By default use the value of Git variable core.notesRef or
"refs/notes/commits" if that is undefined.

T p (magit-notes-prune)
Remove notes about unreachable commits.

T s (magit-notes-set-ref)
Set the current notes ref to a the value read from the user. The ref is made
current by setting the value of the Git variable core.notesRef. With a prefix
argument change the global value instead of the value in the current repository.
When this is undefined, then "refs/notes/commit" is used.

Other magit-notes-* commands, as well as the sub-commands of Git’s note
command, default to operate on that ref.

Chapter 8: Miscellaneous 56

T S (magit-notes-set-display-refs)
Set notes refs to be display in addition to "core.notesRef". This reads a colon
separated list of notes refs from the user. The values are stored in the Git
variable notes.displayRef. With a prefix argument GLOBAL change the
global values instead of the values in the current repository.

It is possible to merge one note ref into another. That may result in conflicts which have
to resolved in the temporary worktree ".git/NOTESMERGEWORKTREE".

T m (magit-notes-merge)
Merge the notes of a ref read from the user into the current notes ref.
The current notes ref is the value of Git variable core.notesRef or
"refs/notes/commits" if that is undefined.

When a notes merge is in progress then the popup features the following suffix commands,
instead of those listed above.

T c (magit-notes-merge-commit)
Commit the current notes ref merge, after manually resolving conflicts.

T a (magit-notes-merge-abort)
Abort the current notes ref merge.

8.3 Submodules

Also see the git-submodule(1) manpage .

o (magit-submodule-popup)
This prefix command shows the following suffix commands along with the ap-
propriate infix arguments in a popup buffer.

o a (magit-submodule-add)
Add the repository at URL as a submodule. Optional PATH is the path to the
submodule relative to the root of the super-project. If it is nil then the path is
determined based on URL.

o b (magit-submodule-setup)
Clone and register missing submodules and checkout appropriate commits.

o i (magit-submodule-init)
Register submodules listed in ".gitmodules" into ".git/config".

o u (magit-submodule-update)
Clone missing submodules and checkout appropriate commits. With a prefix
argument also register submodules in ".git/config".

o s (magit-submodule-sync)
Update each submodule’s remote URL according to ".gitmodules".

o f (magit-submodule-fetch)
Fetch submodule. With a prefix argument fetch all remotes.

o i (magit-submodule-init)
Unregister the submodule at PATH.

Chapter 8: Miscellaneous 57

8.4 Wip modes

Git keeps committed changes around long enough for users to recover changes they have
accidentally deleted. It does so by not garbage collecting any committed but no longer
referenced objects for a certain period of time, by default 30 days.

But Git does not keep track of uncommitted changes in the working tree and not even
the index (the staging area). Because Magit makes it so convenient to modify uncommitted
changes, it also makes it easy to shoot yourself in the foot in the process.

For that reason Magit provides three global modes that save tracked files to work-in-
progress references after or before certain actions. (Untracked files are never saved and
these modes also only work after the first commit has been created).

Two separate work-in-progress references are used to track the state of the index and of
the working tree: "refs/wip/index/<branchref>" and "refs/wip/wtree/<branchref>", where
<branchref> is the full ref of the current branch, e.g. "refs/heads/master". When the HEAD
is detached then "HEAD" is in place of <branchref>.

Checking out another branch (or detaching HEAD) causes the use of different wip refs for
subsequent changes, but the old refs are not deleted.

Creating a commit and then making a change causes the wip refs to be recreated to fork
from the new commit. But the old commits on the wip refs are not lost. They are still
available from the reflog. To make it easier to see when the fork point of a wip ref was
changed, an additional commit with the message "restart autosaving" is created on it (xxO
commits below are such boundary commits).

Starting with

BI0---BI1 refs/wip/index/refs/heads/master

/

A---B refs/heads/master

\

BW0---BW1 refs/wip/wtree/refs/heads/master

and committing the staged changes and editing and saving a file would result in

BI0---BI1 refs/wip/index/refs/heads/master

/

A---B---C refs/heads/master

\ \

\ CW0---CW1 refs/wip/wtree/refs/heads/master

\

BW0---BW1 refs/wip/wtree/refs/heads/master@{2}

The fork-point of the index wip ref is not changed until some change is being staged.
Likewise just checking out a branch or creating a commit does not change the fork-point of
the working tree wip ref. The fork-points are not adjusted until there actually is a change
that should be committed to the respective wip ref.

To view the log for the a branch and its wip refs use the commands magit-wip-log and
magit-wip-log-current. You should use --graph when using these commands. Alterna-
tively you can use the reflog to show all commits that ever existed on a wip ref. You can
then recover lost changes from the commits shown in the log or reflog.

Chapter 8: Miscellaneous 58

[Command]magit-wip-log
This command shows the log for a branch and its wip refs.

With a negative prefix argument only the worktree wip ref is shown. The absolute
numeric value of the prefix argument controls how many "branches" of each wip ref
are shown.

[Command]magit-wip-log-current
This command shows the log for the current branch and its wip refs.

With a negative prefix argument only the worktree wip ref is shown. The absolute
numeric value of the prefix argument controls how many "branches" of each wip ref
are shown.

There exists a total of three global modes that save to the wip refs, which might seem
excessive, but allows fine tuning of when exactly changes are being committed to the wip
refs. Enabling all modes makes it less likely that a change slips through the cracks.

Setting the below variable directly does not take effect; either customize them or call
the respective mode function.

[User Option]magit-wip-after-save-mode
When this mode is enabled, then saving a buffer that visits a file tracked in a Git
repository causes its current state to be committed to the working tree wip ref for
the current branch.

[User Option]magit-wip-after-apply-mode
When this mode is enabled, then applying (i.e. staging, unstaging, discarding, re-
versing, and regularly applying) a change to a file tracked in a Git repository causes
its current state to be committed to the index and/or working tree wip refs for the
current branch.

If you only ever edit files using Emacs and only ever interact with Git using Magit, then
the above two modes should be enough to protect each and every change from accidental
loss. In practice nobody does that. So an additional mode exists that does commit to the
wip refs before making changes that could cause the loss of earlier changes.

[User Option]magit-wip-before-change-mode
When this mode is enabled, then certain commands commit the existing changes to
the files they are about to make changes to.

Note that even if you enable all three modes this won’t give you perfect protection. The
most likely scenario for losing changes despite the use of these modes is making a change
outside Emacs and then destroying it also outside Emacs. In such a scenario, Magit, being
an Emacs package, didn’t get the opportunity to keep you from shooting yourself in the
foot.

When you are unsure whether Magit did commit a change to the wip refs, then you can
explicitly request that all changes to all tracked files are being committed.

M-x magit-wip-commit (magit-wip-commit)
This command commits all changes to all tracked files to the index and working
tree work-in-progress refs. Like the modes described above, it does not commit

Chapter 8: Miscellaneous 59

untracked files, but it does check all tracked files for changes. Use this command
when you suspect that the modes might have overlooked a change made outside
Emacs/Magit.

[User Option]magit-wip-after-save-local-mode-lighter
Mode-line lighter for magit-wip-after-save-local-mode.

[User Option]magit-wip-after-apply-mode-lighter
Mode-line lighter for magit-wip-after-apply-mode.

[User Option]magit-wip-before-change-mode-lighter
Mode-line lighter for magit-wip-before-change-mode.

[User Option]magit-wip-namespace
The namespace used for work-in-progress refs. It has to end with a slash. The wip refs
are named "<namespace>index/<branchref>" and "<namespace>wtree/<branchref>".
When snapshots are created while the HEAD is detached then "HEAD" is used in place
of <branchref>.

8.5 File-buffer mode

The magit-file-buffer-mode enables certain Magit features in file-visiting buffers belong-
ing to a Git repository. It should be enabled globally using global-magit-file-buffer-

mode. Currently this mode only establishes a few key bindings, but this might be extended
in the future.

[User Option]global-magit-file-buffer-mode
Whether to establish certain Magit key bindings in all file-visiting buffers belonging
to a Git repository. This establishes the bindings suggested in Chapter 3 [Getting
started], page 6 (but only for file-visiting buffers), and additionally binds C-c M-g to
magit-file-buffer-popup.

[Command]magit-file-buffer-popup
This prefix command shows a popup buffer featuring suffix commands that operate
on the file being visited in the current buffer.

Chapter 9: Customizing 60

9 Customizing

Both Git and Emacs are highly customizable. Magit is both a Git porcelain as well as an
Emacs package, so it makes sense to customize it using both Git variables as well as Emacs
options. However this flexibility doesn’t come without problems, including but not limited
to the following.

• Some Git variables automatically have an effect in Magit without requiring any explicit
support. Sometimes that is desirable - in other cases, it breaks Magit.

When a certain Git setting breaks Magit but you want to keep using that setting on
the command line, then that can be accomplished by overriding the value for Magit
only by appending something like ("-c" "some.variable=compatible-value") to
magit-git-global-arguments.

• Certain settings like fetch.prune=true are respected by Magit commands (because
they simply call the respective Git command) but their value is not reflected in the
respective popup buffers. In this case the --prune argument in magit-fetch-popup

might be active or inactive depending on the value of magit-fetch-arguments only,
but that doesn’t keep the Git variable from being honored by the suffix commands
anyway. So pruning might happen despite the the --prune arguments being displayed
in a way that seems to indicate that no pruning will happen.

I intend to address these and similar issues in a future release.

9.1 Per-repository configuration

Magit can be configured on a per-repository level using both Git variables as well as Emacs
options.

To set a Git variable for one repository only, simply set it in /path/to/repo/.git/config
instead of $HOME/.gitconfig or /etc/gitconfig. See the git-config(1) manpage .

Similarly, Emacs options can be set for one repository only by editing
/path/to/repo/.dir-locals.el. See Section “Directory Variables” in emacs. For
example to disable automatic refreshes of file-visiting buffers in just one huge repository
use this:

• /path/to/huge/repo/.dir-locals.el

((nil . ((magit-refresh-buffers . nil))

If you want to apply the same settings to several, but not all, repositories then keeping
the repository-local config files in sync would quickly become annoying. To avoid that you
can create config files for certain classes of repositories (e.g. "huge repositories") and then
include those files in the per-repository config files. For example:

• /path/to/huge/repo/.git/config

[include]

path = /path/to/huge-gitconfig

• /path/to/huge-gitconfig

[status]

showUntrackedFiles = no

• $HOME/.emacs.d/init.el

Chapter 9: Customizing 61

(dir-locals-set-class-variables ’huge-git-repository

’((nil . ((magit-refresh-buffers . nil)))))

(dir-locals-set-directory-class

"/path/to/huge/repo/" ’huge-git-repository)

9.2 Essential settings

The next two sections list and discuss several variables that many users might want to
customize, for safety and/or performance reasons.

9.2.1 Safety

This section discusses various variables that you might want to change (or not change) for
safety reasons.

Git keeps committed changes around long enough for users to recover changes they have
accidentally deleted. It does not do the same for uncommitted changes in the working
tree and not even the index (the staging area). Because Magit makes it so easy to modify
uncommitted changes, it also makes it easy to shoot yourself in the foot in the process. For
that reason Magit provides three global modes that save tracked files to work-in-progress
references after or before certain actions. See Section 8.4 [Wip modes], page 57.

These modes are not enabled by default because of performance concerns. Instead a
lot of potentially destructive commands require confirmation every time they are used. In
many cases this can be disabled by adding a symbol to magit-no-confirm (see Section 4.6
[Completion and confirmation], page 14). If you enable the various wip modes then you
should add safe-with-wip to this list.

Similarly it isn’t necessary to require confirmation before moving a file to the system
trash - if you trashed a file by mistake then you can recover it from the there. Option
magit-delete-by-moving-to-trash controls whether the system trash is used, which is
the case by default. Nevertheless, trash isn’t a member of magit-no-confirm - you might
want to change that.

Buffers visiting files tracked in the current repository are being refreshed before certain
actions. See Section 4.3 [Automatic refresh and revert], page 9. This isn’t as risky as it
might seem. If a buffer is modified (i.e. it contains changes that haven’t been saved yet),
then Emacs/Magit would refuse to revert it. If the buffer has been saved resulting in what
is seen by Git as an uncommitted change, then Git in turn would refuse to carry out the
action that would cause these changes to be lost. Since Git doesn’t do anything, the file
doesn’t change on disk, and Emacs/Magit has nothing to revert.

However if you do modify some files, visit the respective files in Emacs, somehow dis-
card the changes (not using Magit and probably even outside Emacs), and then expect
the respective file-visiting buffers to retain the uncommitted changes, then the automatic
reverting would actually be harmful. In other words if you use file-visiting buffers as a sort
of "staging area", then you should set magit-revert-buffers to nil.

So far I have only heard from one user who uses such a workflow. But because there
might be some other users doing such things, and I don’t want to be responsible for data
loss, these reverts by default happen quite verbosely, allowing these few users to undo the
reverts using the undo command and then disabling the automatic reverts for the future.

Chapter 9: Customizing 62

Most users should however keep automatic reverts turned on and instead configure it to be
less verbose by setting magit-revert-buffers to t or even silent.

9.2.2 Performance

Magit is slower than raw Git because it does more. For example git commit creates a
commit and that’s it. magit-commit also updates the current Magit buffer to make sure
you are not looking at outdated information without noticing it. To refresh the status
buffer, Magit has to run Git a dozen times or more, making it slower than git status,
but also much more informative. Magit also optionally reverts file-visiting buffers, creates
backups, runs hooks where third-party extensions can do their slow thing, etc.

I do care about performance and try to optimize for it as much as possible, but many
features simply come with an inherent performance penalty. When a feature is just too slow
given certain usage and repository characteristics, then it often can be disabled, globally or
on a per-repository basis.

But first a short list of performance issues that cannot easily be worked around:

• Creating a new process on MS Windows is much slower than on POSIX-compatible
systems. This is a problem because Magit creates a lot of child processes to retrieve
information from Git. In the short run, only switching to a POSIX system can fix this.
Of course this could also be fixed in Windows itself, but I am just one unpaid person
while Microsoft is a billion dollar company, so I will leave it to them to fix this grave
flaw in their OS.

• When showing logs, Magit limits the number of commits initially shown in the hope
that this avoids unnecessary work. When using --graph this unfortunately does not
have the desired effect for large histories. Junio said on the git mailing list (http://
www.spinics.net/lists/git/msg232230.html): "--graph wants to compute the
whole history and the max-count only affects the output phase after --graph does its
computation".

In other words, it’s not that Git is slow at outputting the differences, or that Magit is
slow at parsing the output - the problem is that Git first goes outside and has a smoke.
This has to be fixed in Git but so far nobody volunteered to do it. Maybe you could
do that?

• Whenever "something changes", Magit "refreshes" the status buffer and the current
Magit buffer by recreating them from scratch. This is an old design decision that we
couldn’t depart from easily. And it has its benefits too - most importantly it’s much
simpler and less error prone to do it this way than to only refreshing "what actually
has changed" (that would basically be a huge collection of special cases). So for now at
least, we don’t avoid recreating the buffer content and instead focus on making doing
so faster.

Now for the things that you can do to improve performance:

Most optional features which can have a negative effect on performance are disabled by
default. So start by checking the options you have customized. Even the potentially slow
features are expected to only lead to barely noticeable delays, but your mileage may vary.
Also note that it is now possible to set options on a per-repository or per-repository-class
basis. See Section 9.1 [Per-repository configuration], page 60.

You should check the values of at least the following variables:

http://www.spinics.net/lists/git/msg232230.html
http://www.spinics.net/lists/git/msg232230.html

Chapter 9: Customizing 63

• magit-after-revert-hook

• magit-diff-auto-show

• magit-diff-highlight-hunk-body

• magit-diff-highlight-indentation

• magit-diff-highlight-trailing

• magit-diff-paint-whitespace

• magit-diff-refine-hunk

• magit-log-arguments, magit-log-select-arguments, and magit-log-section-

arguments

In repositories with more than a few thousand commits --graph should never be a
member of magit-log-section-arguments. That variable is in the status buffer which
is refreshed every time you run any Magit command.

Using --color --graph is even slower. Magit uses code that is part of Emacs to turn
control characters into faces. That code is pretty slow and this is quite noticeable when
showing a log with many branches and merges. For that reason --color is not enabled
by default anymore. Consider leaving it at that.

• magit-not-reverted-hook

• magit-refresh-buffer-hook

• magit-refs-sections-hook

When refreshing the "references buffer" is slow, then that’s usually because several
hundred refs are being displayed. The best way to address that is to display fewer refs,
obviously.

If you are not, or only mildly, interested in seeing the list of tags, then start by not
displaying them:

(remove-hook ’magit-refs-sections-hook ’magit-insert-tags)

Then you should also make sure that the listed remote branches actually all exist. You
can do so by pruning branches which no longer exist using f-pa.

• magit-status-refresh-hook

• magit-wip-after-apply-mode

• magit-wip-after-save-mode

• magit-wip-before-change-mode

Also note that everything involving "cherry commits" is slow.

If, after actually trying the above suggestions, performance is still bad, and the above
does not contain a statement explaining why that is so in that particular case and that there
is nothing that we can currently do about it, then comment on the appropriate existing
issue (see https://github.com/magit/magit/labels/performance), or if necessary open
a new issue. Note that "something is slow, I am using v2.2" is not helpful, you have to be
a bit more specific. Benchmarks are a start.

https://github.com/magit/magit/labels/performance

Chapter 10: Plumbing 64

10 Plumbing

The following sections describe how to use several of Magit’s core abstractions to extend
Magit itself or implement a separate extension.

A few of the low-level features used by Magit have been factored out into separate
libraries/packages, so that they can be used by other packages, without having to de-
pend on Magit. These libraries are described in separate manuals, see with-editor and
magit-popup.

10.1 Calling Git

Magit provides many specialized functions for calling Git. All of these functions are defined
in either magit-git.el or magit-process.el and have one of the prefixes magit-run-,
magit-call-, magit-start-, or magit-git- (which is also used for other things).

All of these functions accept an indefinite number of arguments, which are strings that
specify command line arguments for git (or in some cases an arbitrary executable). These
arguments are flattened before being passed on to the executable; so instead of strings they
can also be lists of strings and arguments that are nil are silently dropped. Some of these
functions also require a single mandatory argument before these command line arguments.

Roughly speaking these functions run Git either to get some value or for side-effect. The
functions that return a value are useful to collect the information necessary to populate a
Magit buffer, while the others are used to implement Magit commands.

The functions in the value-only group always run synchronously, and they never trigger
a refresh. The function in the side-effect group can be further divided into subgroups
depending on whether they run Git synchronously or asynchronously, and depending on
whether they trigger a refresh when the executable has finished.

10.1.1 Getting a value from Git

These functions run Git in order to get a value, either its exit status or its output. Of
course you could also use them to run Git commands that have side-effects, but that should
be avoided.

[Function]magit-git-exit-code &rest args
Executes git with ARGS and returns its exit code.

[Function]magit-git-success &rest args
Executes git with ARGS and returns t if the exit code is 0, nil otherwise.

[Function]magit-git-failure &rest args
Executes git with ARGS and returns t if the exit code is 1, nil otherwise.

[Function]magit-git-true &rest args
Executes git with ARGS and returns t if the first line printed by git is the string
"true", nil otherwise.

[Function]magit-git-false &rest args
Executes git with ARGS and returns t if the first line printed by git is the string
"false", nil otherwise.

Chapter 10: Plumbing 65

[Function]magit-git-insert &rest args
Executes git with ARGS and inserts its output at point.

[Function]magit-git-string &rest args
Executes git with ARGS and returns the first line of its output. If there is no output
or if it begins with a newline character, then this returns nil.

[Function]magit-git-lines &rest args
Executes git with ARGS and returns its output as a list of lines. Empty lines anywhere
in the output are omitted.

[Function]magit-git-items &rest args
Executes git with ARGS and returns its null-separated output as a list. Empty items
anywhere in the output are omitted.

If the value of option magit-git-debug is non-nil and git exits with a non-zero exit
status, then warn about that in the echo area and add a section containing git’s
standard error in the current repository’s process buffer.

When an error occurs when using one of the above functions, then that is usually due to
a bug, i.e. the use of an argument which is not actually supported. Such errors are usually
not reported, but when they occur we need to be able to debug them.

[User Option]magit-git-debug
Whether to report errors that occur when using magit-git-insert, magit-git-

string, magit-git-lines, or magit-git-items. This does not actually raise an
error. Instead a message is shown in the echo area, and git’s standard error is insert
into a new section in the current repository’s process buffer.

[Function]magit-git-str &rest args
This is a variant of magit-git-string that ignores the option magit-git-debug. It
is mainly intended to be used while handling errors in functions that do respect that
option. Using such a function while handing an error could cause yet another error
and therefore lead to an infinite recursion. You probably won’t ever need to use this
function.

10.1.2 Calling Git for effect

These functions are used to run git to produce some effect. Most Magit commands that
actually run git do so by using such a function.

Because we do not need to consume git’s output when using these functions, their output
is instead logged into a per-repository buffer, which can be shown using $ from a Magit
buffer or M-x magit-process elsewhere.

These functions can have an effect in two distinct ways. Firstly, running git may change
something, i.e. create or push a new commit. Secondly, that change may require that
Magit buffers are refreshed to reflect the changed state of the repository. But refreshing
isn’t always desirable, so only some of these functions do perform such a refresh after git
has returned.

Sometimes it is useful to run git asynchronously. For example, when the user has just
initiated a push, then there is no reason to make her wait until that has completed. In

Chapter 10: Plumbing 66

other cases it makes sense to wait for git to complete before letting the user do something
else. For example after staging a change it is useful to wait until after the refresh because
that also automatically moves to the next change.

[Function]magit-call-git &rest args
Calls git synchronously with ARGS.

[Function]magit-call-process program &rest args
Calls PROGRAM synchronously with ARGS.

[Function]magit-run-git &rest args
Calls git synchronously with ARGS and then refreshes.

[Function]magit-run-git-with-input input &rest args
Calls git synchronously with ARGS and sends it INPUT on standard input.

INPUT should be a buffer or the name of an existing buffer. The content of that
buffer is used as the process’ standard input. After the process returns a refresh is
performed.

As a special case, INPUT may also be nil. In that case the content of the current
buffer is used as standard input and no refresh is performed.

This function actually runs git asynchronously. But then it waits for the process to
return, so the function itself is synchronous.

[Function]magit-run-git-with-logfile file &rest args
Calls git synchronously with ARGS. The process’ output is saved in FILE. This is
rarely useful and so this function might be removed in the future.

This function actually runs git asynchronously. But then it waits for the process to
return, so the function itself is synchronous.

[Function]magit-git &rest args
Calls git synchronously with ARGS for side-effects only. This function does not refresh
the buffer.

[Function]magit-git-wash washer &rest args
Execute Git with ARGS, inserting washed output at point. Actually first insert the
raw output at point. If there is no output call magit-cancel-section. Otherwise
temporarily narrow the buffer to the inserted text, move to its beginning, and then
call function WASHER with no argument.

And now for the asynchronous variants.

[Function]magit-run-git-async &rest args
Start Git, prepare for refresh, and return the process object. ARGS is flattened and
then used as arguments to Git.

Display the command line arguments in the echo area.

After Git returns some buffers are refreshed: the buffer that was current when this
function was called (if it is a Magit buffer and still alive), as well as the respective
Magit status buffer. Unmodified buffers visiting files that are tracked in the current
repository are reverted if magit-revert-buffers is non-nil.

Chapter 10: Plumbing 67

[Function]magit-run-git-with-editor &rest args
Export GITEDITOR and start Git. Also prepare for refresh and return the process
object. ARGS is flattened and then used as arguments to Git.

Display the command line arguments in the echo area.

After Git returns some buffers are refreshed: the buffer that was current when this
function was called (if it is a Magit buffer and still alive), as well as the respective
Magit status buffer.

[Function]magit-start-git &rest args
Start Git, prepare for refresh, and return the process object.

If INPUT is non-nil, it has to be a buffer or the name of an existing buffer. The buffer
content becomes the processes standard input.

Option magit-git-executable specifies the Git executable and option magit-git-

global-arguments specifies constant arguments. The remaining arguments ARGS
specify arguments to Git. They are flattened before use.

After Git returns, some buffers are refreshed: the buffer that was current when this
function was called (if it is a Magit buffer and still alive), as well as the respective
Magit status buffer. Unmodified buffers visiting files that are tracked in the current
repository are reverted if magit-revert-buffers is non-nil.

[Function]magit-start-process &rest args
Start PROGRAM, prepare for refresh, and return the process object.

If optional argument INPUT is non-nil, it has to be a buffer or the name of an existing
buffer. The buffer content becomes the processes standard input.

The process is started using start-file-process and then setup to use the sen-
tinel magit-process-sentinel and the filter magit-process-filter. Information
required by these functions is stored in the process object. When this function returns
the process has not started to run yet so it is possible to override the sentinel and
filter.

After the process returns, magit-process-sentinel refreshes the buffer that was
current when magit-start-process was called (if it is a Magit buffer and still alive),
as well as the respective Magit status buffer. Unmodified buffers visiting files that are
tracked in the current repository are reverted if magit-revert-buffers is non-nil.

[Variable]magit-this-process
The child process which is about to start. This can be used to change the filter and
sentinel.

[Variable]magit-process-raise-error
When this is non-nil, then magit-process-sentinel raises an error if git exits with
a non-zero exit status. For debugging purposes.

10.2 Section plumbing

Chapter 10: Plumbing 68

10.2.1 Creating sections

[Macro]magit-insert-section &rest args
Insert a section at point.

TYPE is the section type, a symbol. Many commands that act on the current section
behave differently depending on that type. Also if a variable magit-TYPE-section-

map exists, then use that as the text-property keymap of all text belonging to the
section (but this may be overwritten in subsections).

Optional VALUE is the value of the section, usually a string that is required when
acting on the section.

When optional HIDE is non-nil collapse the section body by default, i.e. when first
creating the section, but not when refreshing the buffer. Otherwise, expand it by de-
fault. This can be overwritten using magit-section-set-visibility-hook. When
a section is recreated during a refresh, then the visibility of predecessor is inherited
and HIDE is ignored (but the hook is still honored).

BODY is any number of forms that actually insert the section’s heading and body.
Optional NAME, if specified, has to be a symbol, which is then bound to the struct
of the section being inserted.

Before BODY is evaluated the start of the section object is set to the value of point
and after BODY was evaluated its end is set to the new value of point; BODY is
responsible for moving point forward.

If it turns out inside BODY that the section is empty, then magit-cancel-section

can be used to abort and remove all traces of the partially inserted section. This
can happen when creating a section by washing Git’s output and Git didn’t actually
output anything this time around.

[Function]magit-insert-heading &rest args
Insert the heading for the section currently being inserted.

This function should only be used inside magit-insert-section.

When called without any arguments, then just set the content slot of the object
representing the section being inserted to a marker at point. The section should only
contain a single line when this function is used like this.

When called with arguments ARGS, which have to be strings, then insert those strings
at point. The section should not contain any text before this happens and afterwards
it should again only contain a single line. If the face property is set anywhere
inside any of these strings, then insert all of them unchanged. Otherwise use the
magit-section-heading face for all inserted text.

The content property of the section struct is the end of the heading (which lasts from
start to content) and the beginning of the body (which lasts from content to end).
If the value of content is nil, then the section has no heading and its body cannot
be collapsed. If a section does have a heading then its height must be exactly one
line, including a trailing newline character. This isn’t enforced; you are responsible
for getting it right. The only exception is that this function does insert a newline
character if necessary.

Chapter 10: Plumbing 69

[Function]magit-cancel-section
Cancel the section currently being inserted. This exits the innermost call to
magit-insert-section and removes all traces of what has already happened inside
that call.

[Function]magit-define-section-jumper sym title &optional value
Define an interactive function to go to section SYM. TITLE is the displayed title of
the section.

10.2.2 Section selection

[Function]magit-current-section
Return the section at point.

[Function]magit-region-sections
Return a list of the selected sections.

When the region is active and constitutes a valid section selection, then return a list
of all selected sections. This is the case when the region begins in the heading of a
section and ends in the heading of a sibling of that first section. When the selection
is not valid then return nil. Most commands that can act on the selected sections,
then instead just act on the current section, the one point is in.

When the region looks like it would in any other buffer then the selection is invalid.
When the selection is valid then the region uses the magit-section-highlight. This
does not apply to diffs where things get a bit more complicated, but even here if the
region looks like it usually does, then that’s not a valid selection as far as this function
is concerned.

[Function]magit-region-values &rest types
Return a list of the values of the selected sections.

Also see magit-region-sections whose doc-string explains when a region is a valid
section selection. If the region is not active or is not a valid section selection, then
return nil. If optional TYPES is non-nil then the selection not only has to be valid;
the types of all selected sections additionally have to match one of TYPES, or nil is
returned.

10.2.3 Matching sections

M-x magit-describe-section (magit-describe-section)
Show information about the section at point. This command is intended for
debugging purposes.

[Function]magit-section-ident
Return an unique identifier for SECTION. The return value has the form ((TYPE .

VALUE)...).

[Function]magit-get-section
Return the section identified by IDENT. IDENT has to be a list as returned by
magit-section-ident.

Chapter 10: Plumbing 70

[Function]magit-section-match condition &optional section
Return t if SECTION matches CONDITION. SECTION defaults to the section at
point.

Conditions can take the following forms:

• (CONDITION...)

matches if any of the CONDITIONs matches.

• [TYPE...]

matches if the first TYPE matches the type of the section at point, the second
matches that of its parent, and so on.

• [* TYPE...]

matches sections that match [TYPE. . .] and also recursively all their child sec-
tions.

• TYPE

matches TYPE regardless of its parents.

Each TYPE is a symbol. Note that is not necessary to specify all TYPEs up to the
root section as printed by magit-describe-type, unless of course your want to be
that precise.

[Function]magit-section-when condition &rest body
If the section at point matches CONDITION evaluate BODY.

If the section matches evaluate BODY forms sequentially and return the value of the
last one, or if there are no BODY forms return the value of the section. If the section
does not match return nil.

See magit-section-match for the forms CONDITION can take.

[Function]magit-section-case &rest clauses
Choose among clauses on the type of the section at point.

Each clause looks like (CONDITION BODY. . .). The type of the section is com-
pared against each CONDITION; the BODY forms of the first match are evaluated
sequentially and the value of the last form is returned. Inside BODY the symbol it is
bound to the section at point. If no clause succeeds or if there is no section at point
return nil.

See magit-section-match for the forms CONDITION can take. Additionally a
CONDITION of t is allowed in the final clause and matches if no other CONDI-
TION match, even if there is no section at point.

[Variable]magit-root-section
The root section in the current buffer. All other sections are descendants of this
section. The value of this variable is set by magit-insert-section and you should
never modify it.

For diff related sections a few additional tools exist.

Chapter 10: Plumbing 71

[Function]magit-diff-type &optional section
Return the diff type of SECTION.

The returned type is one of the symbols staged, unstaged, committed, or undefined.
This type serves a similar purpose as the general type common to all sections (which
is stored in the type slot of the corresponding magit-section struct) but takes
additional information into account. When the SECTION isn’t related to diffs and
the buffer containing it also isn’t a diff-only buffer, then return nil.

Currently the type can also be one of tracked and untracked, but these values are
not handled explicitly in every place they should be. A possible fix could be to just
return nil here.

The section has to be a diff or hunk section, or a section whose children are of type
diff. If optional SECTION is nil, return the diff type for the current section. In
buffers whose major mode is magit-diff-mode SECTION is ignored and the type is
determined using other means. In magit-revision-mode buffers the type is always
committed.

[Function]magit-diff-scope &optional section strict
Return the diff scope of SECTION or the selected section(s).

A diff’s "scope" describes what part of a diff is selected, it is a symbol, one of region,
hunk, hunks, file, files, or list. Do not confuse this with the diff "type", as
returned by magit-diff-type.

If optional SECTION is non-nil, then return the scope of that, ignoring the sections
selected by the region. Otherwise return the scope of the current section, or if the
region is active and selects a valid group of diff related sections, the type of these
sections, i.e. hunks or files. If SECTION (or if the current section that is nil) is a
hunk section and the region starts and ends inside the body of a that section, then
the type is region.

If optional STRICT is non-nil then return nil if the diff type of the section at point
is untracked or the section at point is not actually a diff but a diffstat section.

10.3 Refreshing buffers

All commands that create a new Magit buffer or change what is being displayed in an
existing buffer do so by calling magit-mode-setup. Among other things, that function
sets the buffer local values of default-directory (to the top-level of the repository),
magit-refresh-function, and magit-refresh-args.

Buffers are refreshed by calling the function that is the local value of magit-refresh-
function (a function named magit-*-refresh-buffer, where * may be something like
diff) with the value of magit-refresh-args as arguments.

[Macro]magit-mode-setup buffer switch-func mode refresh-func &optional
refresh-args

This function displays and selects BUFFER, turns on MODE, and refreshes a first
time.

This function displays and optionally selects BUFFER by calling magit-mode-

display-buffer with BUFFER, MODE and SWITCH-FUNC as arguments. Then

Chapter 10: Plumbing 72

it sets the local value of magit-refresh-function to REFRESH-FUNC and that of
magit-refresh-args to REFRESH-ARGS. Finally it creates the buffer content by
calling REFRESH-FUNC with REFRESH-ARGS as arguments.

All arguments are evaluated before switching to BUFFER.

[Function]magit-mode-display-buffer buffer mode &optional switch-function
This function display BUFFER in some window and select it. BUFFER may be a
buffer or a string, the name of a buffer. The buffer is returned.

Unless BUFFER is already displayed in the selected frame, store the previous window
configuration as a buffer local value, so that it can later be restored by magit-mode-

bury-buffer.

The buffer is displayed and selected using SWITCH-FUNCTION. If that is nil then
pop-to-buffer is used if the current buffer’s major mode derives from magit-mode.
Otherwise switch-to-buffer is used.

[Variable]magit-refresh-function
The value of this buffer-local variable is the function used to refresh the current buffer.
It is called with magit-refresh-args as arguments.

[Variable]magit-refresh-args
The list of arguments used by magit-refresh-function to refresh the current buffer.
magit-refresh-function is called with these arguments.

The value is usually set using magit-mode-setup, but in some cases it’s also
useful to provide commands which can change the value. For example, the
magit-diff-refresh-popup can be used to change any of the arguments used
to display the diff, without having to specify again which differences should be
shown. magit-diff-more-context, magit-diff-less-context, and magit-diff-

default-context change just the -U<N> argument. In both case this is done by
changing the value of this variable and then calling this magit-refresh-function.

10.4 Conventions

10.4.1 Confirmation and completion

Dangerous operations that may lead to data loss have to be confirmed by default. With
a multi-section selection, this is done using questions that can be answered with "yes" or
"no". When the region isn’t active, or if it doesn’t constitute a valid section selection, then
such commands instead read a single item in the minibuffer. When the value of the current
section is among the possible choices, then that is presented as default choice. To confirm
the action on a single item, the user has to answer RET (instead of "yes"), and to abort,
C-g (instead of "no"). But alternatively the user may also select another item, just like if
the command had been invoked with no suitable section at point at all.

10.4.2 Theming Faces

The default theme uses blue for local branches, green for remote branches, and goldenrod
(brownish yellow) for tags. When creating a new theme, you should probably follow that
example. If your theme already uses other colors, then stick to that.

Chapter 10: Plumbing 73

In older releases these reference faces used to have a background color and a box around
them. The basic default faces no longer do so, to make Magit buffers much less noisy, and
you should follow that example at least with regards to boxes. (Boxes were used in the past
to work around a conflict between the highlighting overlay and text property backgrounds.
That’s no longer necessary because highlighting no longer causes other background colors to
disappear.) Alternatively you can keep the background color and/or box, but then have to
take special care to adjust magit-branch-current accordingly. By default it looks mostly
like magit-branch-local, but with a box (by default the former is the only face that uses
a box, exactly so that it sticks out). If the former also uses a box, then you have to make
sure that it differs in some other way from the latter.

The most difficult faces to theme are those related to diffs, headings, highlighting, and
the region. There are faces that fall into all four groups - expect to spend some time getting
this right.

The region face in the default theme, in both the light and dark variants, as well as in
many other themes, distributed with Emacs or by third-parties, is very ugly. It is common
to use a background color that really sticks out, which is ugly but if that were the only
problem then it would be acceptable. Unfortunately many themes also set the foreground
color, which ensures that all text within the region is readable. Without doing that there
might be cases where some foreground color is too close to the region background color to
still be readable. But it also means that text within the region loses all syntax highlighting.

I consider the work that went into getting the region face right to be a good indicator
for the general quality of a theme. My recommendation for the region face is this: use a
background color slightly different from the background color of the default face, and do
not set the foreground color at all. So for a light theme you might use a light (possibly tinted)
gray as the background color of default and a somewhat darker gray for the background
of region. That should usually be enough to not collide with the foreground color of any
other face. But if some other faces also set a light gray as background color, then you should
also make sure it doesn’t collide with those (in some cases it might be acceptable though).

Magit only uses the region face when the region is "invalid" by its own definition. In a
Magit buffer the region is used to either select multiple sibling sections, so that commands
which support it act on all of these sections instead of just the current section, or to select
lines within a single hunk section. In all other cases, the section is considered invalid and
Magit won’t act on it. But such invalid sections happen, either because the user has not
moved point enough yet to make it valid or because she wants to use a non-magit command
to act on the region, e.g. kill-region.

So using the regular region face for invalid sections is a feature. It tells the user that
Magit won’t be able to act on it. It’s acceptable if that face looks a bit odd and even (but
less so) if it collides with the background colors of section headings and other things that
have a background color.

Magit highlights the current section. If a section has subsections, then all of them are
highlighted. This is done using faces that have "highlight" in their names. For most sections,
magit-section-highlight is used for both the body and the heading. Like the region

face, it should only set the background color to something similar to that of default. The
highlight background color must be different from both the region background color and
the default background color.

Chapter 10: Plumbing 74

For diff related sections Magit uses various faces to highlight different parts of the selected
section(s). Note that hunk headings, unlike all other section headings, by default have
a background color, because it is useful to have very visible separators between hunks.
That face magit-diff-hunk-heading, should be different from both magit-diff-hunk-

heading-highlight and magit-section-highlight, as well as from magit-diff-context

and magit-diff-context-highlight. By default we do that by changing the foreground
color. Changing the background color would lead to complications, and there are already
enough we cannot get around. (Also note that it is generally a good idea for section headings
to always be bold, but only for sections that have subsections).

When there is a valid region selecting diff-related sibling sections, i.e. multiple files or
hunks, then the bodies of all these sections use the respective highlight faces, but addition-
ally the headings instead use one of the faces magit-diff-file-heading-selection or
magit-diff-hunk-heading-selection. These faces have to be different from the regular
highlight variants to provide explicit visual indication that the region is active.

When theming diff related faces, start by setting the option magit-diff-refine-hunk to
all. You might personally prefer to only refine the current hunk or not use hunk refinement
at all, but some of the users of your theme want all hunks to be refined, so you have to
cater to that.

(Also turn on magit-diff-highlight-indentation, magit-diff-highlight-

trailing, and magit-diff-paint-whitespace; and insert some whitespace errors into
the code you use for testing.)

For e.g. "added lines" you have to adjust three faces: magit-diff-added, magit-diff-
added-highlight, and smerge-refined-added. Make sure that the latter works well with
both of the former, as well as smerge-other and diff-added. Then do the same for the
removed lines, context lines, lines added by us, and lines added by them. Also make sure
the respective added, removed, and context faces use approximately the same saturation for
both the highlighted and unhighlighted variants. Also make sure the file and diff headings
work nicely with context lines (e.g. make them look different). Line faces should set both
the foreground and the background color. For example, for added lines use two different
greens.

It’s best if the foreground color of both the highlighted and the unhighlighted variants
are the same, so you will need to have to find a color that works well on the highlight and
unhighlighted background, the refine background, and the highlight context background.
When there is an hunk internal region, then the added- and removed-lines background color
is used only within that region. Outside the region the highlighted context background color
is used. This makes it easier to see what is being staged. With an hunk internal region the
hunk heading is shown using magit-diff-hunk-heading-selection, and so are the thin
lines that are added around the lines that fall within the region. The background color of
that has to be distinct enough from the various other involved background colors.

Nobody said this would be easy. If your theme restricts itself to a certain set of colors,
then you should make an exception here. Otherwise it would be impossible to make the
diffs look good in each and every variation. Actually you might want to just stick to the
default definitions for these faces. You have been warned. Also please note that if you do
not get this right, this will in some cases look to users like bugs in Magit - so please do it
right or not at all.

Appendix A: FAQ 75

Appendix A FAQ

Below you find a list of frequently asked questions. For a list of frequently and recently
asked questions, i.e. questions that haven’t made it into the manual yet, see https://

github.com/magit/magit/wiki/FAQ.

A.1 Magit is slow

See Section 9.2.2 [Performance], page 62.

A.2 I am having problems committing

That likely means that Magit is having problems finding an appropriate emacsclient exe-
cutable. See Section “Configuring With-Editor” in with-editor and Section “Debugging”
in with-editor.

A.3 I am using an Emacs release older than 24.4

At least version 24.4 is required. There is no way around it.

If you own the machine you work on, then consider updating to the latest release provided
by your distribution. If it doesn’t feature a recent enough release, then you will have to use
a backport package or build Emacs from source.

Installing Emacs from source is quite simple. See the instructions at http://git.

savannah.gnu.org/cgit/emacs.git/tree/INSTALL and http://git.savannah.gnu.

org/cgit/emacs.git/tree/INSTALL.REPO to get an idea of that this involves. But
when you perform the installation then use the instructions for the release you are actually
installing.

Unfortunately these instructions do not cover the hardest part (which is the hardest part
exactly because it is not covered there): installing the build time dependencies.

For that you’ll need to perform a web search and find an appropriate tutorial for your
distribution. If you think you should not have had to do that yourself, then consider
informing me about the resources that helped you figure what to do for your specific setup,
so that I can post a link here. That way those coming after you have it easier.

A.4 I am using a Git release older than 1.9.4

At least version 1.9.4 is required. There is no way around it.

If you own the machine, then consider updating to the latest release provided by your
distribution. If it doesn’t feature a recent enough release, then you will have to use a
backport package or build Git from source.

Installing Git from source is quite simple. See the instructions at https://github.

com/git/git/blob/master/INSTALL to get an idea of that this involves. But when you
perform the installation then use the instructions for the release you are actually installing.

https://github.com/magit/magit/wiki/FAQ
https://github.com/magit/magit/wiki/FAQ
http://git.savannah.gnu.org/cgit/emacs.git/tree/INSTALL
http://git.savannah.gnu.org/cgit/emacs.git/tree/INSTALL
http://git.savannah.gnu.org/cgit/emacs.git/tree/INSTALL.REPO
http://git.savannah.gnu.org/cgit/emacs.git/tree/INSTALL.REPO
https://github.com/git/git/blob/master/INSTALL
https://github.com/git/git/blob/master/INSTALL

Appendix A: FAQ 76

A.5 I am using MS Windows and cannot push with Magit

It’s almost certain that Magit is only incidental to this issue. It is much more likely that
this is a configuration issue, even if you can push on the command line.

Detailed setup instructions can be found at https://github.com/magit/magit/wiki/
Pushing-with-Magit-from-Windows.

A.6 How to install the gitman info manual?

Git’s manpages can be exported as an info manual called gitman. Magit’s own info manual
links to nodes in that manual instead of the actual manpages because texinfo sadly doesn’t
support linking to manpages.

Unfortunately many distributions do not install the gitman manual by default. Some
distributions may provide a separate package containing the info manual. Please let me
know the name of that package for your distribution, so that I can mention here.

If the distribution you are using does not offer a package that contains the gitman

manual, then you have to install it manually. Clone Git’s own Git repository, checkout
the tag corresponding to the Git release you have installed, and follow the instructions in
INSTALL. The relevant make targets are info and install-info.

Alternatively you may add this advice to your init.el file.

(defadvice Info-follow-nearest-node (around gitman activate)

"When encountering a cross reference to the ‘gitman’ info

manual, then instead of following that cross reference show

the actual manpage using the function ‘man’."

(let ((node (Info-get-token

(point) "*note[\n\t]+"

"*note[\n\t]+\\([^:]*\\):\\(:\\|[\n\t]*(\\)?")))

(if (and node (string-match "^(gitman)\\(.+\\)" node))

(progn (require ’man)

(man (match-string 1 node)))

ad-do-it)))

Or if you are using MS Windows and man is not available, use this variation with used
the Emacs Lisp implementation provided by the woman package.

(defadvice Info-follow-nearest-node (around gitman activate)

"When encountering a cross reference to the ‘gitman’ info

manual, then instead of following that cross reference show

the actual manpage using the function ‘woman’."

(let ((node (Info-get-token

(point) "*note[\n\t]+"

"*note[\n\t]+\\([^:]*\\):\\(:\\|[\n\t]*(\\)?")))

(if (and node (string-match "^(gitman)\\(.+\\)" node))

(progn (require ’woman)

(woman (match-string 1 node)))

ad-do-it)))

Did I mention that texinfo cross reference are just awful? (This is just one of many
issues.)

https://github.com/magit/magit/wiki/Pushing-with-Magit-from-Windows
https://github.com/magit/magit/wiki/Pushing-with-Magit-from-Windows

Appendix A: FAQ 77

A.7 How can I show Git’s output?

To show the output of recently run git commands, press $ (or, if that isn’t available, M-x
magit-process-buffer). This will show a buffer containing a section per git invocation;
as always press TAB to expand or collapse them.

By default git’s output is only inserted into the process buffer if it is run for side-effects.
When the output is consumed in some way then also inserting it into the process buffer
would be to expensive. For debugging purposes it’s possible to do so anyway by setting
magit-git-debug to t.

A.8 Expanding a file to show the diff causes it to disappear

This is probably caused by a change of a diff.* Git variable. You probably set that
variable for a reason, and should therefore only undo that setting in Magit by customizing
magit-git-global-arguments.

A.9 Magit claims repository accessed using Tramp does not
exist

"There is no Git repository in /ssh:host:/path/to/repository".

Magit requires at least version 1.9.4. When connecting to a remote machine using
Tramp it requires that same version on that remote.

By default Tramp searches for programs in the directories given by the output of getconf
PATH on the remote host. Therefore, if the remote git version that you intend to use lives in
a non-standard location, you may need to alter tramp-remote-path. Consult the Tramp
documentation on remote programs http://www.gnu.org/software/emacs/manual/

html_node/tramp/Remote-Programs.html for details.

There are others reasons why Magit/Git might think that there is no repository where
there actually is one, but when this is being reported then it’s usually the above.

A.10 Can Magit be used as ediff-version-control-package?

No, it cannot. For that to work the functions ediff-magit-internal and ediff-magit-

merge-internal would have to be implemented, and they are not. These two functions
are only used by the three commands ediff-revision, ediff-merge-revisions-with-
ancestor, and ediff-merge-revisions.

These commands only delegate the task of populating buffers with certain revisions
to the "internal" functions. The equally important task of determining which revisions
are to be compared/merged is not delegated. Instead this is done without any support
whatsoever, from the version control package/system - meaning that the user has to en-
ter the revisions explicitly. Instead of implementing ediff-magit-internal we provide
magit-ediff-compare, which handles both tasks like it is 2005.

The other commands ediff-merge-revisions and ediff-merge-revisions-with-

ancestor are normally not what you want when using a modern version control system
like Git. Instead of letting the user resolve only those conflicts which Git could not resolve
on its own, they throw away all work done by Git and then expect the user to manually
merge all conflicts, including those that had already been resolved. That made sense back

http://www.gnu.org/software/emacs/manual/html_node/tramp/Remote-Programs.html
http://www.gnu.org/software/emacs/manual/html_node/tramp/Remote-Programs.html

Appendix A: FAQ 78

in the days when version control systems couldn’t merge (or so I have been told), but not
anymore. Once in a blue moon you might actually want to see all conflicts, in which case
you can use these commands, which then use ediff-vc-merge-internal. So we don’t
actually have to implement ediff-magit-merge-internal. Instead we provide the more
useful command magit-ediff-resolve which only shows yet-to-be resolved conflicts.

A.11 How to show diffs for gpg-encrypted files?

Git supports showing diffs for encrypted files, but has to be told to do so. Since Magit just
uses Git to get the diffs, configuring Git also affects the diffs displayed inside Magit.

git config --global diff.gpg.textconv "gpg --no-tty --decrypt"

echo "*.gpg filter=gpg diff=gpg" > .gitattributes

A.12 Emacs 24.5 hangs when loading Magit

This is actually triggered by loading Tramp. See https://debbugs.gnu.org/cgi/

bugreport.cgi?bug=20015 for details. You can work around the problem by setting
tramp-ssh-controlmaster-options. Changing your DNS server (e.g. to Google’s
8.8.8.8) may also be sufficient to work around the issue.

https://debbugs.gnu.org/cgi/bugreport.cgi?bug=20015
https://debbugs.gnu.org/cgi/bugreport.cgi?bug=20015

Appendix B: Keystroke Index 79

Appendix B Keystroke Index

!
! . 16
! ! . 16
! a . 16
! b . 16
! g . 16
! k . 16
! p . 16

$
$. 15

+
+ . 24, 27

-
- . 27

^
^ . 11

0
0 . 27

1
1 . 12

2
2 . 12

3
3 . 12

4
4 . 12

A
a . 37
A . 48
A a . 48
A A . 48
A s . 48

B
b . 42
B . 33
b b . 42
b B . 42
B b . 33
b c . 42
b d . 42
b e . 43
B g . 33
B k . 33
b r . 42
B r . 33
B s . 33
b u . 42
b U . 42
B u . 33

C
c . 38, 45
c a . 38
c A . 38
c c . 38
c e . 38
c f . 38
c F . 38
c s . 38
c S . 38
c w . 38
C-<return> . 27
C-<tab> . 11
C-c C-a . 40
C-c C-b . 23, 27
C-c C-c . 14, 25, 39, 45
C-c C-d . 27, 40
C-c C-f . 23, 27
C-c C-i . 40
C-c C-k . 25, 39, 45
C-c C-o . 40
C-c C-p . 40
C-c C-r . 40
C-c C-s . 40
C-c C-t . 40
C-s M-s . 39
C-w . 8
C-x g . 18
C-x u . 46

D
d . 25
D . 26
d c . 26

Appendix B: Keystroke Index 80

d d . 25
D f . 27
D g . 26
d p . 26
d r . 25
D r . 27
d s . 26
D s . 26
d t . 26
D t . 26
d u . 26
d w . 25
D w . 26
DEL . 23, 28, 34, 45

E
e . 30, 45
E . 30
E c . 30
E i . 30
E m . 30
E r . 30
E s . 30
E u . 30
E w . 30

F
f . 45, 52
F . 52
f a . 52
f f . 52
F F . 52
f m . 52
f o . 52
F o . 52

G
g . 10
G . 10

J
j . 28

K
k . 16, 37, 45, 51

L
l . 22
L . 23, 24
l a . 22
l b . 22
L g . 23

l h . 22
l H . 25
l l . 22
l L . 22
l o . 22
l O . 25
l r . 25
L s . 23
L t . 23
L w . 23

M
m . 43
M . 52
m a . 43
M a . 52
m e . 43
M k . 52
m m . 43
m n . 43
m p . 43
M r . 52
M u . 52
M-<tab> . 12
M-1 . 12
M-2 . 12
M-3 . 12
M-4 . 12
M-n . 11, 40, 45
M-p . 11, 39, 45
M-w . 8, 34
M-x magit-blame . 34
M-x magit-blame-popup . 34
M-x magit-clone . 36
M-x magit-describe-section 14, 69
M-x magit-diff-unpulled . 26
M-x magit-diff-unpushed . 26
M-x magit-find-file . 33
M-x magit-find-file-other-window 33
M-x magit-init . 36
M-x magit-log-buffer-file 22
M-x magit-rename-buffer . 8
M-x magit-reset-hard . 49
M-x magit-reset-head . 49
M-x magit-reset-soft . 49
M-x magit-stage-file . 37
M-x magit-unstage-all . 36
M-x magit-unstage-file . 37
M-x magit-version . 17
M-x magit-wip-commit . 58

N
n . 11, 34, 45
N . 34

Appendix B: Keystroke Index 81

O
o . 56
o a . 56
o b . 56
o f . 56
o i . 56
o s . 56
o u . 56

P
p . 11, 34, 45
P . 34, 53
P e . 53
P i . 53
P m . 53
P o . 53
P P . 53
P Q . 53
P t . 53
P T . 53

Q
q . 8, 23, 34

R
r . 44, 45
r a . 44
r e . 44
r f . 44
r l . 44
r o . 44
r r . 44
r s . 44
r w . 44
RET . 27, 32, 34, 45

S
s . 36, 45
S . 36
s-<tab> . 12
SPC . 23, 28, 34, 45

T
t . 35, 55
T . 55
T a . 56
T c . 56
t k . 55
T m . 56
t p . 55
T p . 55
T r . 55
T s . 55

T S . 55
t t . 55
T T . 55
TAB . 11

U
u . 36
U . 36, 49

V
v . 37
V . 48
V a . 49
V A . 49
V s . 49
V v . 49
V V . 49

W
w . 54
W . 54
w a . 54
w m . 54
W p . 54
W r . 54
w s . 54
w w . 54

X
x . 45, 49

Y
y . 31, 46
Y . 22
y c . 31
y o . 31
y y . 31

Z
z . 50
z a . 50
z b . 51
z d . 50
z i . 50
z I . 50
z l . 50
z p . 50
z v . 51
z w . 50
z W . 50
z x . 50
z z . 50
z Z . 50

Appendix C: Command Index 82

Appendix C Command Index

F
forward-line . 45

G
git-commit-ack . 40
git-commit-cc . 40
git-commit-next-message . 40
git-commit-prev-message . 39
git-commit-reported . 40
git-commit-review . 40
git-commit-save-message . 39
git-commit-signoff . 40
git-commit-suggested . 40
git-commit-test . 40
git-rebase-backward-line . 45
git-rebase-edit . 45
git-rebase-exec . 45
git-rebase-fixup . 45
git-rebase-insert . 46
git-rebase-kill-line . 45
git-rebase-move-line-down . 45
git-rebase-move-line-up . 45
git-rebase-pick . 45
git-rebase-reword . 45
git-rebase-show-commit . 45
git-rebase-squash . 45
git-rebase-undo . 46

I
ido-enter-magit-status . 18

M
magit-am-abort . 54
magit-am-apply-maildir . 54
magit-am-apply-patches . 54
magit-am-continue . 54
magit-am-popup . 54
magit-am-skip . 54
magit-apply . 37
magit-bisect-bad . 33
magit-bisect-good . 33
magit-bisect-popup . 33
magit-bisect-reset . 33
magit-bisect-run . 33
magit-bisect-skip . 33
magit-bisect-start . 33
magit-blame . 34
magit-blame-copy-hash . 34
magit-blame-next-chunk . 34
magit-blame-next-chunk-same-commit 34
magit-blame-popup . 34

magit-blame-previous-chunk 34
magit-blame-previous-chunk-same-commit 34
magit-blame-quit . 34
magit-blame-toggle-headings 35
magit-branch . 42
magit-branch-and-checkout . 42
magit-branch-delete . 42
magit-branch-edit-description 43
magit-branch-popup . 42
magit-branch-rename . 42
magit-branch-set-upstream . 42
magit-branch-unset-upstream 42
magit-checkout . 42
magit-cherry . 22
magit-cherry-apply . 48
magit-cherry-pick . 48
magit-cherry-pick-popup . 48
magit-clone . 36
magit-commit . 38
magit-commit-amend . 38
magit-commit-augment . 38
magit-commit-extend . 38
magit-commit-fixup . 38
magit-commit-instant-fixup . 38
magit-commit-instant-squash 38
magit-commit-popup . 38
magit-commit-reword . 38
magit-commit-squash . 38
magit-copy-as-kill . 8
magit-copy-buffer-thing-as-kill 8
magit-describe-section . 14, 69
magit-diff . 25
magit-diff-default-context . 27
magit-diff-dwim . 25
magit-diff-flip-revs . 27
magit-diff-less-context . 27
magit-diff-more-context . 27
magit-diff-paths . 26
magit-diff-popup . 25
magit-diff-refresh . 26
magit-diff-refresh-popup . 26
magit-diff-save-default-arguments 26
magit-diff-set-default-arguments 26
magit-diff-show-or-scroll-down 23, 34, 45
magit-diff-show-or-scroll-up 23, 34, 45
magit-diff-staged . 26
magit-diff-switch-range-type 27
magit-diff-toggle-refine-hunk 26
magit-diff-unpulled . 26
magit-diff-unpushed . 26
magit-diff-unstaged . 26
magit-diff-visit-file . 27
magit-diff-visit-file-worktree . 27
magit-diff-while-committing 27, 40

Appendix C: Command Index 83

magit-diff-worktree . 25
magit-discard . 37
magit-dispatch-popup . 14
magit-ediff-compare . 30
magit-ediff-dwim . 30
magit-ediff-popup . 30
magit-ediff-resolve . 30
magit-ediff-show-commit . 30
magit-ediff-show-staged . 30
magit-ediff-show-unstaged . 30
magit-ediff-show-working-tree 30
magit-ediff-stage . 30
magit-fetch . 52
magit-fetch-all . 52
magit-fetch-current . 52
magit-fetch-popup . 52
magit-file-buffer-popup . 59
magit-find-file . 33
magit-find-file-other-window 33
magit-format-patch . 54
magit-git-command . 16
magit-git-command-topdir . 16
magit-go-backward . 23, 27
magit-go-forward . 23, 27
magit-init . 36
magit-jump-to-diffstat-or-diff 28
magit-log . 22
magit-log-all . 22
magit-log-all-branches . 22
magit-log-branches . 22
magit-log-buffer-file . 22
magit-log-bury-buffer . 23
magit-log-current . 22
magit-log-head . 22
magit-log-popup . 22
magit-log-refresh . 23
magit-log-refresh-popup . 23, 24
magit-log-save-default-arguments 23
magit-log-select-pick . 25
magit-log-select-quit . 25
magit-log-set-default-arguments 23
magit-log-show-more-commits 24
magit-merge . 43
magit-merge-abort . 43
magit-merge-editmsg . 43
magit-merge-nocommit . 43
magit-merge-popup . 43
magit-merge-preview . 43
magit-mode-bury-buffer . 8
magit-notes-edit . 55
magit-notes-merge . 56
magit-notes-merge-abort . 56
magit-notes-merge-commit . 56
magit-notes-popup . 55
magit-notes-prune . 55
magit-notes-remove . 55
magit-notes-set-display-refs . 55
magit-notes-set-ref . 55

magit-patch-popup . 54
magit-process . 15
magit-process-kill . 16
magit-pull . 52
magit-pull-current . 52
magit-pull-popup . 52
magit-push . 53
magit-push-current . 53
magit-push-elsewhere . 53
magit-push-implicitly . 53
magit-push-matching . 53
magit-push-popup . 53
magit-push-quickly . 53
magit-push-tag . 53
magit-push-tags . 53
magit-rebase . 44
magit-rebase-abort . 44
magit-rebase-autosquash . 44
magit-rebase-continue . 44
magit-rebase-edit . 44
magit-rebase-edit-commit . 44
magit-rebase-interactive . 44
magit-rebase-popup . 44
magit-rebase-reword-commit 44
magit-rebase-skip . 44
magit-rebase-subset . 44
magit-rebase-unpushed . 44
magit-reflog-current . 25
magit-reflog-head . 25
magit-reflog-other . 25
magit-refresh . 10
magit-refresh-all . 10
magit-remote-add . 52
magit-remote-popup . 52
magit-remote-remove . 52
magit-remote-rename . 52
magit-remote-set-url . 52
magit-rename-buffer . 8
magit-request-pull . 54
magit-reset . 49
magit-reset-hard . 49
magit-reset-head . 49
magit-reset-index . 36, 49
magit-reset-soft . 49
magit-reverse . 37
magit-revert . 49
magit-revert-no-commit . 49
magit-revert-popup . 48
magit-run-git-gui . 16
magit-run-gitk . 16
magit-run-gitk-all . 16
magit-run-gitk-branches . 16
magit-run-popup . 16
magit-section-backward . 11
magit-section-backward-siblings 11
magit-section-cycle . 11
magit-section-cycle-diffs . 12
magit-section-cycle-global . 12

Appendix C: Command Index 84

magit-section-forward . 11
magit-section-forward-siblings 11
magit-section-hide . 12
magit-section-hide-children . 12
magit-section-show . 12
magit-section-show-children . 12
magit-section-show-headings 12
magit-section-show-level-1 . 12
magit-section-show-level-1-all 12
magit-section-show-level-2 . 12
magit-section-show-level-2-all 12
magit-section-show-level-3 . 12
magit-section-show-level-3-all 12
magit-section-show-level-4 . 12
magit-section-show-level-4-all 12
magit-section-toggle . 11
magit-section-toggle-children 12
magit-section-up . 11
magit-sequence-abort . 48, 49
magit-sequence-continue 48, 49
magit-sequence-skip . 48, 49
magit-shell-command . 16
magit-shell-command-topdir 16
magit-show-commit . 26, 34
magit-show-refs . 31
magit-show-refs-current . 31
magit-show-refs-head . 31
magit-show-refs-popup . 31
magit-snapshot . 50
magit-snapshot-index . 50
magit-snapshot-worktree . 50
magit-stage . 36
magit-stage-file . 37
magit-stage-modified . 36
magit-stash . 50
magit-stash-apply . 50
magit-stash-branch . 51
magit-stash-clear . 51
magit-stash-drop . 50

magit-stash-index . 50
magit-stash-keep-index . 50
magit-stash-list . 50
magit-stash-pop . 50
magit-stash-popup . 50
magit-stash-show . 26, 51
magit-stash-worktree . 50
magit-status . 18
magit-submodule-add . 56
magit-submodule-fetch . 52, 56
magit-submodule-init . 56
magit-submodule-popup . 56
magit-submodule-setup . 56
magit-submodule-sync . 56
magit-submodule-update . 56
magit-tag . 55
magit-tag-delete . 55
magit-tag-popup . 55
magit-tag-prune . 55
magit-toggle-margin . 23
magit-unstage . 36
magit-unstage-all . 36
magit-unstage-file . 37
magit-version . 17
magit-visit-ref . 32
magit-wip-commit . 58
magit-wip-log . 57
magit-wip-log-current . 58

S
scroll-down . 28
scroll-up . 28

W
with-editor-cancel . 39, 45
with-editor-finish . 39, 45

Appendix D: Function Index 85

Appendix D: Function Index 86

Appendix D Function Index

G
git-commit-check-style-conventions 42
git-commit-propertize-diff 41
git-commit-save-message . 41
git-commit-setup-changelog-support 41
git-commit-turn-on-auto-fill 41
git-commit-turn-on-flyspell 41

I
ido-enter-magit-status . 18

M
magit-add-section-hook . 13
magit-builtin-completing-read 15
magit-call-git . 66
magit-call-process . 66
magit-cancel-section . 69
magit-current-section . 69
magit-define-section-jumper 69
magit-diff-scope . 71
magit-diff-type . 71
magit-file-buffer-popup . 59
magit-get-section . 69
magit-git . 66
magit-git-exit-code . 64
magit-git-failure . 64
magit-git-false . 64
magit-git-insert . 65
magit-git-items . 65
magit-git-lines . 65
magit-git-str . 65
magit-git-string . 65
magit-git-success . 64
magit-git-true . 64
magit-git-wash . 66
magit-hunk-set-window-start 11
magit-ido-completing-read 15
magit-insert-am-sequence 19
magit-insert-bisect-log . 19
magit-insert-bisect-output 19
magit-insert-bisect-rest 19
magit-insert-head-header 21
magit-insert-heading . 68
magit-insert-local-branches 33
magit-insert-merge-log . 19
magit-insert-rebase-sequence 19
magit-insert-recent-commits 20
magit-insert-remote-branches 33
magit-insert-remote-header 21
magit-insert-repo-header 21
magit-insert-section . 68
magit-insert-sequencer-sequence 19
magit-insert-staged-changes 20

magit-insert-stashes . 20
magit-insert-status-headers 21
magit-insert-tags . 33
magit-insert-tags-header 21
magit-insert-tracked-files 20
magit-insert-unpulled-cherries 20
magit-insert-unpulled-commits 20
magit-insert-unpulled-module-commits 20
magit-insert-unpulled-or-recent-commits . . 20
magit-insert-unpushed-cherries 20
magit-insert-unpushed-commits 20
magit-insert-unpushed-module-commits 20
magit-insert-unstaged-changes 19
magit-insert-untracked-files 19
magit-insert-upstream-header 21
magit-insert-user-header 21
magit-log-maybe-show-commit 11
magit-log-maybe-show-more-commits 11
magit-mode-display-buffer 72
magit-mode-setup . 71
magit-region-sections . 69
magit-region-values . 69
magit-revert-buffers . 41
magit-run-git . 66
magit-run-git-async . 66
magit-run-git-with-editor 67
magit-run-git-with-input 66
magit-run-git-with-logfile 66
magit-section-case . 70
magit-section-hide . 12
magit-section-hide-children 12
magit-section-ident . 69
magit-section-match . 70
magit-section-set-window-start 11
magit-section-show . 12
magit-section-show-children 12
magit-section-show-headings 12
magit-section-show-level-1 12
magit-section-show-level-1-all 12
magit-section-show-level-2 12
magit-section-show-level-2-all 12
magit-section-show-level-3 12
magit-section-show-level-3-all 12
magit-section-show-level-4 12
magit-section-show-level-4-all 12
magit-section-toggle-children 12
magit-section-when . 70
magit-start-git . 67
magit-start-process . 67
magit-wip-log . 58
magit-wip-log-current . 58

W
with-editor-usage-message 41

Appendix E: Variable Index 87

Appendix E Variable Index

G
git-commit-fill-column . 41
git-commit-finish-query-functions 42
git-commit-known-pseudo-headers 40
git-commit-major-mode . 40
git-commit-setup-hook . 41
git-commit-summary-max-length 41
git-rebase-auto-advance . 46
git-rebase-confirm-cancel 46
git-rebase-show-instructions 46
global-magit-file-buffer-mode 59

M
magit-after-revert-hook . 10
magit-blame-goto-chunk-hook 35
magit-blame-heading-format 35
magit-blame-show-headings 35
magit-blame-time-format . 35
magit-branch-read-upstream-first 43
magit-commit-ask-to-stage 39
magit-commit-extend-override-date 39
magit-commit-reword-override-date 39
magit-commit-squash-confirm 39
magit-completing-read-function 14
magit-diff-auto-show . 28
magit-diff-auto-show-delay 28
magit-diff-highlight-indentation 29
magit-diff-highlight-trailing 29
magit-diff-paint-whitespace 29
magit-diff-refine-hunk . 29
magit-diff-show-diffstat 28
magit-diff-show-xref-buttons 28
magit-ediff-dwim-show-on-hunks 30
magit-ediff-quit-hook . 30
magit-git-debug . 16, 65
magit-git-executable . 17
magit-git-global-arguments 17
magit-log-auto-more . 24
magit-log-cutoff-length . 24
magit-log-section-args . 22
magit-log-section-commit-count 20

magit-log-show-margin . 24
magit-log-show-refname-after-summary 24
magit-no-confirm . 15
magit-not-reverted-hook . 10
magit-process-raise-error 67
magit-push-always-verify 53
magit-refresh-args . 72
magit-refresh-buffer-hook 10
magit-refresh-function . 72
magit-refs-indent-cherry-lines 32
magit-refs-local-branch-format 32
magit-refs-remote-branch-format 32
magit-refs-sections-hook 33
magit-refs-show-commit-count 31
magit-refs-show-margin . 31
magit-refs-tags-format . 32
magit-repository-directories 18
magit-repository-directories-depth 18
magit-restore-window-configuration 8
magit-revert-buffers . 9
magit-revision-insert-related-refs 29
magit-revision-show-diffstat 29
magit-revision-show-notes 29
magit-revision-show-xref-buttons 29
magit-root-section . 70
magit-save-repository-buffers 9
magit-section-movement-hook 11
magit-section-set-visibility-hook 13
magit-section-show-child-count 14
magit-status-buffer-name-format 21
magit-status-buffer-switch-function 21
magit-status-headers-hook 21
magit-status-refresh-hook 21
magit-status-sections-hook 19
magit-this-process . 67
magit-visit-ref-create . 32
magit-wip-after-apply-mode 58
magit-wip-after-apply-mode-lighter 59
magit-wip-after-save-local-mode-lighter . . 59
magit-wip-after-save-mode 58
magit-wip-before-change-mode 58
magit-wip-before-change-mode-lighter 59
magit-wip-namespace . 59

	Introduction
	Installation
	Updating from an older release
	Installing from an Elpa archive
	Installing from the Git repository
	Post-installation tasks

	Getting started
	Interface concepts
	Modes and Buffers
	Automatic save
	Automatic refresh and revert
	Sections
	Section movement
	Section visibility
	Section hooks
	Section types and values
	Section options

	Popup buffers and prefix commands
	Completion and confirmation
	Running Git
	Viewing Git output
	Running Git manually
	Git executable
	Global Git arguments

	Inspecting
	Status buffer
	Status sections
	Status header sections
	Status options

	Logging
	Refreshing logs
	Log Buffer
	Select from log
	Reflog

	Diffing
	Refreshing diffs
	Diff buffer
	Diff options
	Revision buffer

	Ediffing
	References buffer
	References sections

	Bisecting
	Visiting blobs
	Blaming

	Manipulating
	Repository setup
	Staging and unstaging
	Staging from file-visiting buffers

	Applying
	Committing
	Initiating a commit
	Editing commit messages

	Branching
	Merging
	Rebasing
	Editing rebase sequences
	Rebase sequence log

	Cherry picking
	Reverting

	Resetting
	Stashing

	Transferring
	Remotes
	Fetching
	Pulling
	Pushing
	Creating and sending patches
	Applying patches

	Miscellaneous
	Tagging
	Notes
	Submodules
	Wip modes
	File-buffer mode

	Customizing
	Per-repository configuration
	Essential settings
	Safety
	Performance

	Plumbing
	Calling Git
	Getting a value from Git
	Calling Git for effect

	Section plumbing
	Creating sections
	Section selection
	Matching sections

	Refreshing buffers
	Conventions
	Confirmation and completion
	Theming Faces

	FAQ
	Magit is slow
	I am having problems committing
	I am using an Emacs release older than 24.4
	I am using a Git release older than 1.9.4
	I am using MS Windows and cannot push with Magit
	How to install the gitman info manual?
	How can I show Git's output?
	Expanding a file to show the diff causes it to disappear
	Magit claims repository accessed using Tramp does not exist
	Can Magit be used as ediff-version-control-package?
	How to show diffs for gpg-encrypted files?
	Emacs 24.5 hangs when loading Magit

	Keystroke Index
	Command Index
	Function Index
	Variable Index

