Magit User Manual
Table of Contents
	Magit User Manual
	1. Introduction
	2. Installation
		2.1. Installing from Melpa
	2.2. Installing from the Git Repository
	2.3. Post-Installation Tasks

	3. Getting Started
	4. Interface Concepts
		4.1. Modes and Buffers
		4.1.1. Switching Buffers
	4.1.2. Naming Buffers
	4.1.3. Quitting Windows
	4.1.4. Automatic Refreshing of Magit Buffers
	4.1.5. Automatic Saving of File-Visiting Buffers
	4.1.6. Automatic Reverting of File-Visiting Buffers

	4.2. Sections
		4.2.1. Section Movement
	4.2.2. Section Visibility
	4.2.3. Section Hooks
	4.2.4. Section Types and Values
	4.2.5. Section Options

	4.3. Transient Commands
	4.4. Transient Arguments and Buffer Variables
	4.5. Completion, Confirmation and the Selection
		4.5.1. Action Confirmation
	4.5.2. Completion and Confirmation
	4.5.3. The Selection
	4.5.4. The hunk-internal region
	4.5.5. Support for Completion Frameworks
	4.5.6. Additional Completion Options

	4.6. Running Git
		4.6.1. Viewing Git Output
	4.6.2. Git Process Status
	4.6.3. Running Git Manually
	4.6.4. Git Executable
	4.6.5. Global Git Arguments

	5. Inspecting
		5.1. Status Buffer
		5.1.1. Status Sections
	5.1.2. Status Header Sections
	5.1.3. Status Module Sections
	5.1.4. Status Options

	5.2. Repository List
	5.3. Logging
		5.3.1. Refreshing Logs
	5.3.2. Log Buffer
	5.3.3. Log Margin
	5.3.4. Select from Log
	5.3.5. Reflog
	5.3.6. Cherries

	5.4. Diffing
		5.4.1. Refreshing Diffs
	5.4.2. Commands Available in Diffs
	5.4.3. Diff Options
	5.4.4. Revision Buffer

	5.5. Ediffing
	5.6. References Buffer
		5.6.1. References Sections

	5.7. Bisecting
	5.8. Visiting Files and Blobs
		5.8.1. General-Purpose Visit Commands
	5.8.2. Visiting Files and Blobs from a Diff

	5.9. Blaming

	6. Manipulating
		6.1. Creating Repository
	6.2. Cloning Repository
	6.3. Staging and Unstaging
		6.3.1. Staging from File-Visiting Buffers

	6.4. Applying
	6.5. Committing
		6.5.1. Initiating a Commit
	6.5.2. Editing Commit Messages

	6.6. Branching
		6.6.1. The Two Remotes
	6.6.2. Branch Commands
	6.6.3. Branch Git Variables
	6.6.4. Auxiliary Branch Commands

	6.7. Merging
	6.8. Resolving Conflicts
	6.9. Rebasing
		6.9.1. Editing Rebase Sequences
	6.9.2. Information About In-Progress Rebase

	6.10. Cherry Picking
		6.10.1. Reverting

	6.11. Resetting
	6.12. Stashing

	7. Transferring
		7.1. Remotes
		7.1.1. Remote Commands
	7.1.2. Remote Git Variables

	7.2. Fetching
	7.3. Pulling
	7.4. Pushing
	7.5. Plain Patches
	7.6. Maildir Patches

	8. Miscellaneous
		8.1. Tagging
	8.2. Notes
	8.3. Submodules
		8.3.1. Listing Submodules
	8.3.2. Submodule Transient

	8.4. Subtree
	8.5. Worktree
	8.6. Bundle
	8.7. Common Commands
	8.8. Wip Modes
		8.8.1. Wip Graph
	8.8.2. Legacy Wip Modes

	8.9. Commands for Buffers Visiting Files
	8.10. Minor Mode for Buffers Visiting Blobs

	9. Customizing
		9.1. Per-Repository Configuration
	9.2. Essential Settings
		9.2.1. Safety
	9.2.2. Performance
	9.2.3. Default Bindings

	10. Plumbing
		10.1. Calling Git
		10.1.1. Getting a Value from Git
	10.1.2. Calling Git for Effect

	10.2. Section Plumbing
		10.2.1. Creating Sections
	10.2.2. Section Selection
	10.2.3. Matching Sections

	10.3. Refreshing Buffers
	10.4. Conventions
		10.4.1. Theming Faces

	A. FAQ
		A.1. FAQ - How to …?
		A.1.1. How to pronounce Magit?
	A.1.2. How to show git’s output?
	A.1.3. How to install the gitman info manual?
	A.1.4. How to show diffs for gpg-encrypted files?
	A.1.5. How does branching and pushing work?
	A.1.6. Can Magit be used as ediff-version-control-package?
	A.1.7. Should I disable VC?

	A.2. FAQ - Issues and Errors
		A.2.1. Magit is slow
	A.2.2. I changed several thousand files at once and now Magit is unusable
	A.2.3. I am having problems committing
	A.2.4. I am using MS Windows and cannot push with Magit
	A.2.5. I am using OS X and SOMETHING works in shell, but not in Magit
	A.2.6. Expanding a file to show the diff causes it to disappear
	A.2.7. Point is wrong in the COMMIT_EDITMSG buffer
	A.2.8. The mode-line information isn’t always up-to-date
	A.2.9. A branch and tag sharing the same name breaks SOMETHING
	A.2.10. My Git hooks work on the command-line but not inside Magit
	A.2.11. git-commit-mode isn’t used when committing from the command-line
	A.2.12. Point ends up inside invisible text when jumping to a file-visiting buffer
	A.2.13. I am unable to stage when using Tramp from MS Windows
	A.2.14. I am no longer able to save popup defaults

	B. Debugging Tools
	C. Keystroke Index
		Index

	D. Function and Command Index
		Index

	E. Variable Index
		Index

Magit User Manual

Copyright (C) 2015-2022 Jonas Bernoulli <jonas@bernoul.li>

You can redistribute this document and/or modify it under the terms
of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any
later version.

This document is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

Copyright (C) 2015-2022 Jonas Bernoulli <jonas@bernoul.li>

You can redistribute this document and/or modify it under the terms
of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any
later version.

This document is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

Chapter . Magit User Manual

Magit is an interface to the version control system Git, implemented
as an Emacs package. Magit aspires to be a complete Git porcelain.
While we cannot (yet) claim that Magit wraps and improves upon each
and every Git command, it is complete enough to allow even experienced
Git users to perform almost all of their daily version control tasks
directly from within Emacs. While many fine Git clients exist, only
Magit and Git itself deserve to be called porcelains.

This manual is for Magit version v3.3.0-73-g03f495f35+1.

Copyright (C) 2015-2022 Jonas Bernoulli <jonas@bernoul.li>

You can redistribute this document and/or modify it under the terms
of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any
later version.

This document is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

Chapter 1. Introduction

Magit is an interface to the version control system Git, implemented
as an Emacs package. Magit aspires to be a complete Git porcelain.
While we cannot (yet) claim that Magit wraps and improves upon each
and every Git command, it is complete enough to allow even experienced
Git users to perform almost all of their daily version control tasks
directly from within Emacs. While many fine Git clients exist, only
Magit and Git itself deserve to be called porcelains.

Staging and otherwise applying changes is one of the most important
features in a Git porcelain and here Magit outshines anything else,
including Git itself. Git’s own staging interface (git add --patch)
is so cumbersome that many users only use it in exceptional cases.
In Magit staging a hunk or even just part of a hunk is as trivial as
staging all changes made to a file.

The most visible part of Magit’s interface is the status buffer, which
displays information about the current repository. Its content is
created by running several Git commands and making their output
actionable. Among other things, it displays information about the
current branch, lists unpulled and unpushed changes and contains
sections displaying the staged and unstaged changes. That might sound
noisy, but, since sections are collapsible, it’s not.

To stage or unstage a change one places the cursor on the change and
then types s or u. The change can be a file or a hunk, or when the
region is active (i.e. when there is a selection) several files or
hunks, or even just part of a hunk. The change or changes that these
commands - and many others - would act on are highlighted.

Magit also implements several other "apply variants" in addition to
staging and unstaging. One can discard or reverse a change, or
apply it to the working tree. Git’s own porcelain only supports this
for staging and unstaging and you would have to do something like git
diff ... | ??? | git apply ... to discard, revert, or apply a single
hunk on the command line. In fact that’s exactly what Magit does
internally (which is what lead to the term "apply variants").

Magit isn’t just for Git experts, but it does assume some prior
experience with Git as well as Emacs. That being said, many users
have reported that using Magit was what finally taught them what Git
is capable of and how to use it to its fullest. Other users
wished they had switched to Emacs sooner so that they would have
gotten their hands on Magit earlier.

While one has to know the basic features of Emacs to be able to make
full use of Magit, acquiring just enough Emacs skills doesn’t take
long and is worth it, even for users who prefer other editors. Vim
users are advised to give Evil, the "Extensible VI Layer for Emacs",
and Spacemacs, an "Emacs starter-kit focused on Evil" a try.

Magit provides a consistent and efficient Git porcelain. After a
short learning period, you will be able to perform most of your daily
version control tasks faster than you would on the command line. You
will likely also start using features that seemed too daunting in the
past.

Magit fully embraces Git. It exposes many advanced features using a
simple but flexible interface instead of only wrapping the trivial
ones like many GUI clients do. Of course Magit supports logging,
cloning, pushing, and other commands that usually don’t fail in
spectacular ways; but it also supports tasks that often cannot be
completed in a single step. Magit fully supports tasks such as
merging, rebasing, cherry-picking, reverting, and blaming by not only
providing a command to initiate these tasks but also by displaying
context sensitive information along the way and providing commands
that are useful for resolving conflicts and resuming the sequence
after doing so.

Magit wraps and in many cases improves upon at least the following Git
porcelain commands: add, am, bisect, blame, branch, checkout, cherry,
cherry-pick, clean, clone, commit, config, describe, diff, fetch,
format-patch, init, log, merge, merge-tree, mv, notes, pull, rebase,
reflog, remote, request-pull, reset, revert, rm, show, stash,
submodule, subtree, tag, and worktree. Many more Magit porcelain
commands are implemented on top of Git plumbing commands.

Chapter 2. Installation

Magit can be installed using Emacs’ package manager or manually from
its development repository.

Installing from Melpa

Magit is available from Melpa and Melpa-Stable. If you haven’t used
Emacs’ package manager before, then it is high time you familiarize
yourself with it by reading the documentation in the Emacs manual, see
. Then add one of the archives to
package-archives:

	To use Melpa:

(require 'package)
(add-to-list 'package-archives
 '("melpa" . "http://melpa.org/packages/") t)

	To use Melpa-Stable:

(require 'package)
(add-to-list 'package-archives
 '("melpa-stable" . "http://stable.melpa.org/packages/") t)

Once you have added your preferred archive, you need to update the
local package list using:

M-x package-refresh-contents RET

Once you have done that, you can install Magit and its dependencies
using:

M-x package-install RET magit RET

Now see Post-Installation Tasks.

Installing from the Git Repository

Magit depends on the dash, transient and with-editor libraries
which are available from Melpa and Melpa-Stable. Install them using
M-x package-install RET <package> RET. Of course you may also install
them manually from their repository.

Then clone the Magit repository:

$ git clone https://github.com/magit/magit.git ~/.emacs.d/site-lisp/magit
$ cd ~/.emacs.d/site-lisp/magit

Then compile the libraries and generate the info manuals:

$ make

If you haven’t installed dash, transient and with-editor from
Melpa or at /path/to/magit/../<package>, then you have to tell make
where to find them. To do so create the file /path/to/magit/config.mk
with the following content before running make:

LOAD_PATH = -L ~/.emacs.d/site-lisp/magit/lisp
LOAD_PATH += -L ~/.emacs.d/site-lisp/dash
LOAD_PATH += -L ~/.emacs.d/site-lisp/transient/lisp
LOAD_PATH += -L ~/.emacs.d/site-lisp/with-editor

Finally add this to your init file:

(add-to-list 'load-path "~/.emacs.d/site-lisp/magit/lisp")
(require 'magit)

(with-eval-after-load 'info
 (info-initialize)
 (add-to-list 'Info-directory-list
 "~/.emacs.d/site-lisp/magit/Documentation/"))

Of course if you installed the dependencies manually as well, then
you have to tell Emacs about them too, by prefixing the above with:

(add-to-list 'load-path "~/.emacs.d/site-lisp/dash")
(add-to-list 'load-path "~/.emacs.d/site-lisp/transient/lisp")
(add-to-list 'load-path "~/.emacs.d/site-lisp/with-editor")

Note that you have to add the lisp subdirectory to the load-path, not
the top-level of the repository, and that elements of load-path should
not end with a slash, while those of Info-directory-list should.

Instead of requiring the feature magit, you could load just the
autoload definitions, by loading the file magit-autoloads.el.

(load "/path/to/magit/lisp/magit-autoloads")

Instead of running Magit directly from the repository by adding that
to the load-path, you might want to instead install it in some other
directory using sudo make install and setting load-path accordingly.

To update Magit use:

$ git pull
$ make

At times it might be necessary to run make clean all instead.

To view all available targets use make help.

Now see Post-Installation Tasks.

Post-Installation Tasks

After installing Magit you should verify that you are indeed using the
Magit, Git, and Emacs releases you think you are using. It’s best to
restart Emacs before doing so, to make sure you are not using an
outdated value for load-path.

M-x magit-version RET

should display something like

Magit 2.8.0, Git 2.10.2, Emacs 25.1.1, gnu/linux

Then you might also want to read about options that many users likely
want to customize. See Essential Settings.

To be able to follow cross references to Git manpages found in this
manual, you might also have to manually install the gitman info manual,
or advice Info-follow-nearest-node to instead open the actual manpage.
See How to install the gitman info manual?.

If you are completely new to Magit then see Getting Started.

If you run into problems, then please see the FAQ. Also see the
Debugging Tools.

And last but not least please consider making a donation, to ensure
that I can keep working on Magit. See https://magit.vc/donations.
for various donation options.

Chapter 3. Getting Started

This short tutorial describes the most essential features that many
Magitians use on a daily basis. It only scratches the surface but
should be enough to get you started.

IMPORTANT: It is safest if you clone some repository just for this
tutorial. Alternatively you can use an existing local repository, but
if you do that, then you should commit all uncommitted changes before
proceeding.

Type C-x g to display information about the current Git repository in
a dedicated buffer, called the status buffer.

Most Magit commands are commonly invoked from the status buffer. It
can be considered the primary interface for interacting with Git using
Magit. Many other Magit buffers may exist at a given time, but they
are often created from this buffer.

Depending on what state your repository is in, this buffer may contain
sections titled "Staged changes", "Unstaged changes", "Unmerged into
origin/master", "Unpushed to origin/master", and many others.

Since we are starting from a safe state, which you can easily return
to (by doing a git reset --hard PRE-MAGIT-STATE), there currently are
no staged or unstaged changes. Edit some files and save the changes.
Then go back to the status buffer, while at the same time refreshing
it, by typing C-x g. (When the status buffer, or any Magit buffer for
that matter, is the current buffer, then you can also use just g to
refresh it).

Move between sections using p and n. Note that the bodies of some
sections are hidden. Type TAB to expand or collapse the section at
point. You can also use C-tab to cycle the visibility of the current
section and its children. Move to a file section inside the section
named "Unstaged changes" and type s to stage the changes you have made
to that file. That file now appears under "Staged changes".

Magit can stage and unstage individual hunks, not just complete files.
Move to the file you have just staged, expand it using TAB, move to
one of the hunks using n, and unstage just that by typing u. Note how
the staging (s) and unstaging (u) commands operate on the change at
point. Many other commands behave the same way.

You can also un-/stage just part of a hunk. Inside the body of a hunk
section (move there using C-n), set the mark using C-SPC and move down
until some added and/or removed lines fall inside the region but not
all of them. Again type s to stage.

It is also possible to un-/stage multiple files at once. Move to a
file section, type C-SPC, move to the next file using n, and then s to
stage both files. Note that both the mark and point have to be on the
headings of sibling sections for this to work. If the region looks
like it does in other buffers, then it doesn’t select Magit sections
that can be acted on as a unit.

And then of course you want to commit your changes. Type c. This
shows the available commit commands and arguments in a buffer at the
bottom of the frame. Each command and argument is prefixed with the
key that invokes/sets it. Do not worry about this for now. We want
to create a "normal" commit, which is done by typing c again.

Now two new buffers appear. One is for writing the commit message,
the other shows a diff with the changes that you are about to
commit. Write a message and then type C-c C-c to actually create
the commit.

You probably don’t want to push the commit you just created because
you just committed some random changes, but if that is not the case
you could push it by typing P to show all the available push commands
and arguments and then p to push to a branch with the same name as the
local branch onto the remote configured as the push-remote. (If the
push-remote is not configured yet, then you would first be prompted
for the remote to push to.)

So far we have mentioned the commit, push, and log menu commands.
These are probably among the menus you will be using the most, but
many others exist. To show a menu that lists all other menus (as well
as the various apply commands and some other essential commands), type
h. Try a few. (Such menus are also called "transient prefix
commands" or just "transients".)

The key bindings in that menu correspond to the bindings in Magit
buffers, including but not limited to the status buffer. So you could
type h d to bring up the diff menu, but once you remember that "d"
stands for "diff", you would usually do so by just typing d. But this
"prefix of prefixes" is useful even once you have memorized all the
bindings, as it can provide easy access to Magit commands from
non-Magit buffers. The global binding is C-x M-g.

In file visiting buffers C-c M-g brings up a similar menu featuring
commands that act on just the visited file, see Commands for Buffers Visiting Files.

It is not necessary that you do so now, but if you stick with Magit,
then it is highly recommended that you read the next section too.

Chapter 4. Interface Concepts

Modes and Buffers

Magit provides several major-modes. For each of these modes there
usually exists only one buffer per repository. Separate modes and
thus buffers exist for commits, diffs, logs, and some other things.

Besides these special purpose buffers, there also exists an overview
buffer, called the status buffer. It’s usually from this buffer that
the user invokes Git commands, or creates or visits other buffers.

In this manual we often speak about "Magit buffers". By that we mean
buffers whose major-modes derive from magit-mode.

	M-x magit-toggle-buffer-lock

	This command locks the current buffer to its value or if the buffer
is already locked, then it unlocks it.

Locking a buffer to its value prevents it from being reused to
display another value. The name of a locked buffer contains its
value, which allows telling it apart from other locked buffers and
the unlocked buffer.

Not all Magit buffers can be locked to their values; for example, it
wouldn’t make sense to lock a status buffer.

There can only be a single unlocked buffer using a certain
major-mode per repository. So when a buffer is being unlocked and
another unlocked buffer already exists for that mode and repository,
then the former buffer is instead deleted and the latter is
displayed in its place.

Switching Buffers

Function: magit-display-buffer buffer &optional display-function
This function is a wrapper around display-buffer and is used to
display any Magit buffer. It displays BUFFER in some window and,
unlike display-buffer, also selects that window, provided
magit-display-buffer-noselect is nil. It also runs the hooks
mentioned below.

If optional DISPLAY-FUNCTION is non-nil, then that is used to
display the buffer. Usually that is nil and the function specified
by magit-display-buffer-function is used.

Variable: magit-display-buffer-noselect
When this is non-nil, then magit-display-buffer only displays the
buffer but forgoes also selecting the window. This variable should
not be set globally, it is only intended to be let-bound, by code
that automatically updates "the other window". This is used for
example when the revision buffer is updated when you move inside the
log buffer.

User Option: magit-display-buffer-function
The function specified here is called by magit-display-buffer with
one argument, a buffer, to actually display that buffer. This
function should call display-buffer with that buffer as first and a
list of display actions as second argument.

Magit provides several functions, listed below, that are suitable
values for this option. If you want to use different rules, then a
good way of doing that is to start with a copy of one of these
functions and then adjust it to your needs.

Instead of using a wrapper around display-buffer, that function
itself can be used here, in which case the display actions have to
be specified by adding them to display-buffer-alist instead.

To learn about display actions, see .

Function: magit-display-buffer-traditional buffer
This function is the current default value of the option
magit-display-buffer-function. Before that option and this function
were added, the behavior was hard-coded in many places all over the
code base but now all the rules are contained in this one function
(except for the "noselect" special case mentioned above).

Function: magit-display-buffer-same-window-except-diff-v1
This function displays most buffers in the currently selected
window. If a buffer’s mode derives from magit-diff-mode or
magit-process-mode, it is displayed in another window.

Function: magit-display-buffer-fullframe-status-v1
This function fills the entire frame when displaying a status
buffer. Otherwise, it behaves like
magit-display-buffer-traditional.

Function: magit-display-buffer-fullframe-status-topleft-v1
This function fills the entire frame when displaying a status
buffer. It behaves like magit-display-buffer-fullframe-status-v1
except that it displays buffers that derive from magit-diff-mode
or magit-process-mode to the top or left of the current buffer
rather than to the bottom or right. As a result, Magit buffers tend
to pop up on the same side as they would if
magit-display-buffer-traditional were in use.

Function: magit-display-buffer-fullcolumn-most-v1
This function displays most buffers so that they fill the entire
height of the frame. However, the buffer is displayed in another
window if (1) the buffer’s mode derives from magit-process-mode,
or (2) the buffer’s mode derives from magit-diff-mode, provided
that the mode of the current buffer derives from magit-log-mode or
magit-cherry-mode.

User Option: magit-pre-display-buffer-hook
This hook is run by magit-display-buffer before displaying the
buffer.

Function: magit-save-window-configuration
This function saves the current window configuration. Later when
the buffer is buried, it may be restored by
magit-restore-window-configuration.

User Option: magit-post-display-buffer-hook
This hook is run by magit-display-buffer after displaying the
buffer.

Function: magit-maybe-set-dedicated
This function remembers if a new window had to be created to display
the buffer, or whether an existing window was reused. This
information is later used by magit-mode-quit-window, to determine
whether the window should be deleted when its last Magit buffer is
buried.

Naming Buffers

User Option: magit-generate-buffer-name-function
The function used to generate the names of Magit buffers.

Such a function should take the options magit-uniquify-buffer-names
as well as magit-buffer-name-format into account. If it doesn’t,
then should be clearly stated in the doc-string. And if it supports
%-sequences beyond those mentioned in the doc-string of the option
magit-buffer-name-format, then its own doc-string should describe
the additions.

Function: magit-generate-buffer-name-default-function mode
This function returns a buffer name suitable for a buffer whose
major-mode is MODE and which shows information about the repository
in which default-directory is located.

This function uses magit-buffer-name-format and supporting all of
the %-sequences mentioned the documentation of that option. It also
respects the option magit-uniquify-buffer-names.

User Option: magit-buffer-name-format
The format string used to name Magit buffers.

At least the following %-sequences are supported:

	%m

The name of the major-mode, but with the -mode suffix removed.

	%M

Like %m but abbreviate magit-status-mode as magit.

	%v

The value the buffer is locked to, in parentheses, or an empty
string if the buffer is not locked to a value.

	%V

Like %v, but the string is prefixed with a space, unless it is an
empty string.

	%t

The top-level directory of the working tree of the repository, or
if magit-uniquify-buffer-names is non-nil an abbreviation of that.

	%x

If magit-uniquify-buffer-names is nil "*", otherwise the empty
string. Due to limitations of the uniquify package, buffer names
must end with the path.

	%T

Obsolete, use "%t%x" instead. Like %t, but append an asterisk if
and only if magit-uniquify-buffer-names is nil.

The value should always contain %m or %M, %v or %V, and %t (or the
obsolete %T). If magit-uniquify-buffer-names is non-nil, then the
value must end with %t or %t%x (or the obsolete %T). See issue
#2841.

User Option: magit-uniquify-buffer-names
This option controls whether the names of Magit buffers are
uniquified. If the names are not being uniquified, then they
contain the full path of the top-level of the working tree of the
corresponding repository. If they are being uniquified, then they
end with the basename of the top-level, or if that would conflict
with the name used for other buffers, then the names of all these
buffers are adjusted until they no longer conflict.

This is done using the uniquify package; customize its options to
control how buffer names are uniquified.

Quitting Windows

	q (magit-mode-bury-buffer)

	This command buries the current Magit buffer.

With a prefix argument, it instead kills the buffer. With a double
prefix argument, also kills all other Magit buffers associated with
the current project.

User Option: magit-bury-buffer-function
The function used to actually bury or kill the current buffer.

magit-mode-bury-buffer calls this function with one argument. If
the argument is non-nil, then the function has to kill the current
buffer. Otherwise it has to bury it alive. The default value
currently is magit-restore-window-configuration.

Function: magit-restore-window-configuration kill-buffer
Bury or kill the current buffer using quit-window, which is called
with KILL-BUFFER as first and the selected window as second
argument.

Then restore the window configuration that existed right before the
current buffer was displayed in the selected frame. Unfortunately
that also means that point gets adjusted in all the buffers, which
are being displayed in the selected frame.

Function: magit-mode-quit-window kill-buffer
Bury or kill the current buffer using quit-window, which is called
with KILL-BUFFER as first and the selected window as second
argument.

Then, if the window was originally created to display a Magit buffer
and the buried buffer was the last remaining Magit buffer that was
ever displayed in the window, then that is deleted.

Automatic Refreshing of Magit Buffers

After running a command which may change the state of the current
repository, the current Magit buffer and the corresponding status
buffer are refreshed. The status buffer can be automatically refreshed
whenever a buffer is saved to a file inside the respective repository
by adding a hook, like so:

(with-eval-after-load 'magit-mode
 (add-hook 'after-save-hook 'magit-after-save-refresh-status t))

Automatically refreshing Magit buffers ensures that the displayed
information is up-to-date most of the time but can lead to a
noticeable delay in big repositories. Other Magit buffers are not
refreshed to keep the delay to a minimum and also because doing so can
sometimes be undesirable.

Buffers can also be refreshed explicitly, which is useful in buffers
that weren’t current during the last refresh and after changes were
made to the repository outside of Magit.

	g (magit-refresh)

	This command refreshes the current buffer if its major mode derives
from magit-mode as well as the corresponding status buffer.

If the option magit-revert-buffers calls for it, then it also
reverts all unmodified buffers that visit files being tracked in the
current repository.

	G (magit-refresh-all)

	This command refreshes all Magit buffers belonging to the current
repository and also reverts all unmodified buffers that visit files
being tracked in the current repository.

The file-visiting buffers are always reverted, even if
magit-revert-buffers is nil.

User Option: magit-refresh-buffer-hook
This hook is run in each Magit buffer that was refreshed during the
current refresh - normally the current buffer and the status buffer.

User Option: magit-refresh-status-buffer
When this option is non-nil, then the status buffer is automatically
refreshed after running git for side-effects, in addition to the
current Magit buffer, which is always refreshed automatically.

Only set this to nil after exhausting all other options to improve
performance.

Function: magit-after-save-refresh-status
This function is intended to be added to after-save-hook. After
doing that the corresponding status buffer is refreshed whenever a
buffer is saved to a file inside a repository.

Note that refreshing a Magit buffer is done by re-creating its
contents from scratch, which can be slow in large repositories. If
you are not satisfied with Magit’s performance, then you should
obviously not add this function to that hook.

Automatic Saving of File-Visiting Buffers

File-visiting buffers are by default saved at certain points in time.
This doesn’t guarantee that Magit buffers are always up-to-date, but,
provided one only edits files by editing them in Emacs and uses only
Magit to interact with Git, one can be fairly confident. When in
doubt or after outside changes, type g (magit-refresh) to save and
refresh explicitly.

User Option: magit-save-repository-buffers
This option controls whether file-visiting buffers are saved before
certain events.

If this is non-nil then all modified file-visiting buffers belonging
to the current repository may be saved before running commands,
before creating new Magit buffers, and before explicitly refreshing
such buffers. If this is dontask then this is done without user
intervention. If it is t then the user has to confirm each save.

Automatic Reverting of File-Visiting Buffers

By default Magit automatically reverts buffers that are visiting files
that are being tracked in a Git repository, after they have changed on
disk. When using Magit one often changes files on disk by running
Git, i.e. "outside Emacs", making this a rather important feature.

For example, if you discard a change in the status buffer, then that
is done by running git apply --reverse ..., and Emacs considers the
file to have "changed on disk". If Magit did not automatically revert
the buffer, then you would have to type M-x revert-buffer RET RET in
the visiting buffer before you could continue making changes.

User Option: magit-auto-revert-mode
When this mode is enabled, then buffers that visit tracked files
are automatically reverted after the visited files change on disk.

User Option: global-auto-revert-mode
When this mode is enabled, then any file-visiting buffer is
automatically reverted after the visited file changes on disk.

If you like buffers that visit tracked files to be automatically
reverted, then you might also like any buffer to be reverted, not
just those visiting tracked files. If that is the case, then enable
this mode instead of magit-auto-revert-mode.

User Option: magit-auto-revert-immediately
This option controls whether Magit reverts buffers immediately.

If this is non-nil and either global-auto-revert-mode or
magit-auto-revert-mode is enabled, then Magit immediately reverts
buffers by explicitly calling auto-revert-buffers after running Git
for side-effects.

If auto-revert-use-notify is non-nil (and file notifications are
actually supported), then magit-auto-revert-immediately does not
have to be non-nil, because the reverts happen immediately anyway.

If magit-auto-revert-immediately and auto-revert-use-notify are both
nil, then reverts happen after auto-revert-interval seconds of user
inactivity. That is not desirable.

User Option: auto-revert-use-notify
This option controls whether file notification functions should be
used. Note that this variable unfortunately defaults to t even on
systems on which file notifications cannot be used.

User Option: magit-auto-revert-tracked-only
This option controls whether magit-auto-revert-mode only reverts
tracked files or all files that are located inside Git repositories,
including untracked files and files located inside Git’s control
directory.

User Option: auto-revert-mode
The global mode magit-auto-revert-mode works by turning on this
local mode in the appropriate buffers (but global-auto-revert-mode
is implemented differently). You can also turn it on or off
manually, which might be necessary if Magit does not notice that a
previously untracked file now is being tracked or vice-versa.

User Option: auto-revert-stop-on-user-input
This option controls whether the arrival of user input suspends the
automatic reverts for auto-revert-interval seconds.

User Option: auto-revert-interval
This option controls how many seconds Emacs waits for before
resuming suspended reverts.

User Option: auto-revert-buffer-list-filter
This option specifies an additional filter used by
auto-revert-buffers to determine whether a buffer should be reverted
or not.

This option is provided by Magit, which also advises
auto-revert-buffers to respect it. Magit users who do not turn on
the local mode auto-revert-mode themselves, are best served by
setting the value to magit-auto-revert-repository-buffer-p.

However the default is nil, so as not to disturb users who do use the
local mode directly. If you experience delays when running Magit
commands, then you should consider using one of the predicates
provided by Magit - especially if you also use Tramp.

Users who do turn on auto-revert-mode in buffers in which Magit
doesn’t do that for them, should likely not use any filter. Users
who turn on global-auto-revert-mode, do not have to worry about this
option, because it is disregarded if the global mode is enabled.

User Option: auto-revert-verbose
This option controls whether Emacs reports when a buffer has been
reverted.

The options with the auto-revert- prefix are located in the Custom
group named auto-revert. The other, Magit-specific, options are
located in the magit group.

Risk of Reverting Automatically

For the vast majority of users, automatically reverting file-visiting
buffers after they have changed on disk is harmless.

If a buffer is modified (i.e. it contains changes that haven’t been
saved yet), then Emacs will refuse to automatically revert it. If
you save a previously modified buffer, then that results in what is
seen by Git as an uncommitted change. Git will then refuse to carry
out any commands that would cause these changes to be lost. In other
words, if there is anything that could be lost, then either Git or
Emacs will refuse to discard the changes.

However, if you use file-visiting buffers as a sort of ad hoc
"staging area", then the automatic reverts could potentially cause
data loss. So far I have heard from only one user who uses such a
workflow.

An example: You visit some file in a buffer, edit it, and save the
changes. Then, outside of Emacs (or at least not using Magit or by
saving the buffer) you change the file on disk again. At this point
the buffer is the only place where the intermediate version still
exists. You have saved the changes to disk, but that has since been
overwritten. Meanwhile Emacs considers the buffer to be unmodified
(because you have not made any changes to it since you last saved it
to the visited file) and therefore would not object to it being
automatically reverted. At this point an Auto-Revert mode would kick
in. It would check whether the buffer is modified and since that is
not the case it would revert it. The intermediate version would be
lost. (Actually you could still get it back using the undo command.)

If your workflow depends on Emacs preserving the intermediate version
in the buffer, then you have to disable all Auto-Revert modes. But
please consider that such a workflow would be dangerous even without
using an Auto-Revert mode, and should therefore be avoided. If Emacs
crashes or if you quit Emacs by mistake, then you would also lose the
buffer content. There would be no autosave file still containing the
intermediate version (because that was deleted when you saved the
buffer) and you would not be asked whether you want to save the buffer
(because it isn’t modified).

Sections

Magit buffers are organized into nested sections, which can be
collapsed and expanded, similar to how sections are handled in Org
mode. Each section also has a type, and some sections also have a
value. For each section type there can also be a local keymap, shared
by all sections of that type.

Taking advantage of the section value and type, many commands operate on
the current section, or when the region is active and selects sections
of the same type, all of the selected sections. Commands that only
make sense for a particular section type (as opposed to just behaving
differently depending on the type) are usually bound in section type
keymaps.

Section Movement

To move within a section use the usual keys (C-p, C-n, C-b, C-f etc),
whose global bindings are not shadowed. To move to another section use
the following commands.

	p (magit-section-backward)

	When not at the beginning of a section, then move to the beginning
of the current section. At the beginning of a section, instead move
to the beginning of the previous visible section.

	n (magit-section-forward)

	Move to the beginning of the next visible section.

	M-p (magit-section-backward-siblings)

	Move to the beginning of the previous sibling section. If there is
no previous sibling section, then move to the parent section
instead.

	M-n (magit-section-forward-siblings)

	Move to the beginning of the next sibling section. If there is no
next sibling section, then move to the parent section instead.

	^ (magit-section-up)

	Move to the beginning of the parent of the current section.

The above commands all call the hook magit-section-movement-hook.
Any of the functions listed below can be used as members of this hook.

You might want to remove some of the functions that Magit adds using
add-hook. In doing so you have to make sure you do not attempt to
remove function that haven’t even been added yet, for example:

(with-eval-after-load 'magit-diff
 (remove-hook 'magit-section-movement-hook
 'magit-hunk-set-window-start))

Variable: magit-section-movement-hook
This hook is run by all of the above movement commands, after
arriving at the destination.

Function: magit-hunk-set-window-start
This hook function ensures that the beginning of the current section
is visible, provided it is a hunk section. Otherwise, it does
nothing.

Loading magit-diff adds this function to the hook.

Function: magit-section-set-window-start
This hook function ensures that the beginning of the current section
is visible, regardless of the section’s type. If you add this to
magit-section-movement-hook, then you must remove the hunk-only
variant in turn.

Function: magit-log-maybe-show-more-commits
This hook function only has an effect in log buffers, and point is
on the "show more" section. If that is the case, then it doubles
the number of commits that are being shown.

Loading magit-log adds this function to the hook.

Function: magit-log-maybe-update-revision-buffer
When moving inside a log buffer, then this function updates the
revision buffer, provided it is already being displayed in another
window of the same frame.

Loading magit-log adds this function to the hook.

Function: magit-log-maybe-update-blob-buffer
When moving inside a log buffer and another window of the same frame
displays a blob buffer, then this function instead displays the blob
buffer for the commit at point in that window.

Function: magit-status-maybe-update-revision-buffer
When moving inside a status buffer, then this function updates the
revision buffer, provided it is already being displayed in another
window of the same frame.

Function: magit-status-maybe-update-stash-buffer
When moving inside a status buffer, then this function updates the
stash buffer, provided it is already being displayed in another
window of the same frame.

Function: magit-status-maybe-update-blob-buffer
When moving inside a status buffer and another window of the same
frame displays a blob buffer, then this function instead displays
the blob buffer for the commit at point in that window.

Function: magit-stashes-maybe-update-stash-buffer
When moving inside a buffer listing stashes, then this function
updates the stash buffer, provided it is already being displayed
in another window of the same frame.

User Option: magit-update-other-window-delay
Delay before automatically updating the other window.

When moving around in certain buffers, then certain other buffers,
which are being displayed in another window, may optionally be
updated to display information about the section at point.

When holding down a key to move by more than just one section, then
that would update that buffer for each section on the way. To
prevent that, updating the revision buffer is delayed, and this
option controls for how long. For optimal experience you might have
to adjust this delay and/or the keyboard repeat rate and delay of
your graphical environment or operating system.

Section Visibility

Magit provides many commands for changing the visibility of sections,
but all you need to get started are the next two.

	TAB (magit-section-toggle)

	Toggle the visibility of the body of the current section.

	C-<tab> (magit-section-cycle)

	Cycle the visibility of current section and its children.

	M-<tab> (magit-section-cycle-diffs)

	Cycle the visibility of diff-related sections in the current buffer.

	S-<tab> (magit-section-cycle-global)

	Cycle the visibility of all sections in the current buffer.

	1 (magit-section-show-level-1)
, 2 (magit-section-show-level-2)
, 3 (magit-section-show-level-3)
, 4 (magit-section-show-level-4)

	Show sections surrounding the current section up to level N.

	M-1 (magit-section-show-level-1-all)
, M-2 (magit-section-show-level-2-all)
, M-3 (magit-section-show-level-3-all)
, M-4 (magit-section-show-level-4-all)

	Show all sections up to level N.

Some functions, which are used to implement the above commands, are
also exposed as commands themselves. By default no keys are bound to
these commands, as they are generally perceived to be much less
useful. But your mileage may vary.

Command: magit-section-show
Show the body of the current section.

Command: magit-section-hide
Hide the body of the current section.

Command: magit-section-show-headings
Recursively show headings of children of the current section. Only
show the headings. Previously shown text-only bodies are hidden.

Command: magit-section-show-children
Recursively show the bodies of children of the current section.
With a prefix argument show children down to the level of the
current section, and hide deeper children.

Command: magit-section-hide-children
Recursively hide the bodies of children of the current section.

Command: magit-section-toggle-children
Toggle visibility of bodies of children of the current section.

When a buffer is first created then some sections are shown expanded
while others are not. This is hard coded. When a buffer is refreshed
then the previous visibility is preserved. The initial visibility of
certain sections can also be overwritten using the hook
magit-section-set-visibility-hook.

User Option: magit-section-initial-visibility-alist
This options can be used to override the initial visibility of
sections. In the future it will also be used to define the
defaults, but currently a section’s default is still hardcoded.

The value is an alist. Each element maps a section type or lineage
to the initial visibility state for such sections. The state has to
be one of show or hide, or a function that returns one of these
symbols. A function is called with the section as the only argument.

Use the command magit-describe-section-briefly to determine a
section’s lineage or type. The vector in the output is the section
lineage and the type is the first element of that vector. Wildcards
can be used, see magit-section-match.

User Option: magit-section-cache-visibility
This option controls for which sections the previous visibility
state should be restored if a section disappears and later appears
again. The value is a boolean or a list of section types. If t,
then the visibility of all sections is cached. Otherwise this is
only done for sections whose type matches one of the listed types.

This requires that the function magit-section-cached-visibility is
a member of magit-section-set-visibility-hook.

Variable: magit-section-set-visibility-hook
This hook is run when first creating a buffer and also when
refreshing an existing buffer, and is used to determine the
visibility of the section currently being inserted.

Each function is called with one argument, the section being
inserted. It should return hide or show, or to leave the visibility
undefined nil. If no function decides on the visibility and the
buffer is being refreshed, then the visibility is preserved; or if
the buffer is being created, then the hard coded default is used.

Usually this should only be used to set the initial visibility but
not during refreshes. If magit-insert-section--oldroot is non-nil,
then the buffer is being refreshed and these functions should
immediately return nil.

User Option: magit-section-visibility-indicator
This option controls whether and how to indicate that a section can
be expanded/collapsed.

If nil, then no visibility indicators are shown. Otherwise the
value has to have one of these two forms:

	(EXPANDABLE-BITMAP . COLLAPSIBLE-BITMAP)

Both values have to be variables whose values are fringe
bitmaps. In this case every section that can be expanded
or collapsed gets an indicator in the left fringe.

To provide extra padding around the indicator, set
left-fringe-width in magit-mode-hook, e.g.:

(add-hook 'magit-mode-hook (lambda ()
 (setq left-fringe-width 20)))

	(STRING . BOOLEAN)

In this case STRING (usually an ellipsis) is shown at the end
of the heading of every collapsed section. Expanded sections
get no indicator. The cdr controls whether the appearance of
these ellipsis take section highlighting into account. Doing
so might potentially have an impact on performance, while not
doing so is kinda ugly.

Section Hooks

Which sections are inserted into certain buffers is controlled with
hooks. This includes the status and the refs buffers. For other
buffers, e.g. log and diff buffers, this is not possible. The command
magit-describe-section can be used to see which hook (if any) was
responsible for inserting the section at point.

For buffers whose sections can be customized by the user, a hook
variable called magit-TYPE-sections-hook exists. This hook should be
changed using magit-add-section-hook. Avoid using add-hooks or the
Custom interface.

The various available section hook variables are described later in
this manual along with the appropriate "section inserter functions".

Function: magit-add-section-hook hook function &optional at append local
Add the function FUNCTION to the value of section hook HOOK.

Add FUNCTION at the beginning of the hook list unless optional
APPEND is non-nil, in which case FUNCTION is added at the end. If
FUNCTION already is a member then move it to the new location.

If optional AT is non-nil and a member of the hook list, then add
FUNCTION next to that instead. Add before or after AT, or replace
AT with FUNCTION depending on APPEND. If APPEND is the symbol
replace, then replace AT with FUNCTION. For any other non-nil value
place FUNCTION right after AT. If nil, then place FUNCTION right
before AT. If FUNCTION already is a member of the list but AT is
not, then leave FUNCTION where ever it already is.

If optional LOCAL is non-nil, then modify the hook’s buffer-local
value rather than its global value. This makes the hook local by
copying the default value. That copy is then modified.

HOOK should be a symbol. If HOOK is void, it is first set to nil.
HOOK’s value must not be a single hook function. FUNCTION should
be a function that takes no arguments and inserts one or multiple
sections at point, moving point forward. FUNCTION may choose not
to insert its section(s), when doing so would not make sense. It
should not be abused for other side-effects.

To remove a function from a section hook, use remove-hook.

Section Types and Values

Each section has a type, for example hunk, file, and commit.
Instances of certain section types also have a value. The value of a
section of type file, for example, is a file name.

Users usually do not have to worry about a section’s type and value,
but knowing them can be handy at times.

	H (magit-describe-section)

	This command shows information about the section at point in a
separate buffer.

Command: magit-describe-section-briefly
This command shows information about the section at point in the
echo area, as #<magit-section VALUE [TYPE PARENT-TYPE...]
 BEGINNING-END>.

Many commands behave differently depending on the type of the section
at point and/or somehow consume the value of that section. But that
is only one of the reasons why the same key may do something different,
depending on what section is current.

Additionally for each section type a keymap might be defined, named
magit-TYPE-section-map. That keymap is used as text property keymap
of all text belonging to any section of the respective type. If such
a map does not exist for a certain type, then you can define it
yourself, and it will automatically be used.

Section Options

This section describes options that have an effect on more than just a
certain type of sections. As you can see there are not many of those.

User Option: magit-section-show-child-count
Whether to append the number of children to section headings. This
only affects sections that could benefit from this information.

Transient Commands

Many Magit commands are implemented as transient commands. First the
user invokes a prefix command, which causes its infix arguments and
suffix commands to be displayed in the echo area. The user then
optionally sets some infix arguments and finally invokes one of the
suffix commands.

This is implemented in the library transient. Earlier Magit releases
used the package magit-popup and even earlier versions library
magit-key-mode.

Transient is documented in .

	C-c C-c (magit-dispatch)

	This transient prefix command binds most of Magit’s other prefix
commands as suffix commands and displays them in a temporary buffer
until one of them is invoked. Invoking such a sub-prefix causes the
suffixes of that command to be bound and displayed instead of those
of magit-dispatch.

This command is also, or especially, useful outside Magit buffers, so
you should setup a global binding:

(global-set-key (kbd "C-x M-g") 'magit-dispatch)

Transient Arguments and Buffer Variables

The infix arguments of many of Magit’s transient prefix commands cease
to have an effect once the git command that is called with those
arguments has returned. Commands that create a commit are a good
example for this. If the user changes the arguments, then that only
affects the next invocation of a suffix command. If the same
transient prefix command is later invoked again, then the arguments
are initially reset to the default value. This default value can be
set for the current Emacs session or saved permanently, see
. It is also possible to cycle through
previously used sets of arguments using M-p and M-n, see
.

However the infix arguments of many other transient commands continue
to have an effect even after the git command that was called with
those arguments has returned. The most important commands like this
are those that display a diff or log in a dedicated buffer. Their
arguments obviously continue to have an effect for as long as the
respective diff or log is being displayed. Furthermore the used
arguments are stored in buffer-local variables for future reference.

For commands in the second group it isn’t always desirable to reset
their arguments to the global value when the transient prefix command
is invoked again.

As mentioned above, it is possible to cycle through previously used
sets of arguments while a transient popup is visible. That means that
we could always reset the infix arguments to the default because the
set of arguments that is active in the existing buffer is only a few
M-p away. Magit can be configured to behave like that, but because I
expect that most users would not find that very convenient, it is not
the default.

Also note that it is possible to change the diff and log arguments
used in the current buffer (including the status buffer, which
contains both diff and log sections) using the respective "refresh"
transient prefix commands on D and L. (d and l on the other hand are
intended to change what diff or log is being displayed. It is
possible to also change how the diff or log is being displayed at the
same time, but if you only want to do the latter, then you should use
the refresh variants.) Because these secondary diff and log transient
prefixes are about changing the arguments used in the current buffer,
they always start out with the set of arguments that are currently in
effect in that buffer.

Some commands are usually invoked directly even though they can also
be invoked as the suffix of a transient prefix command. Most
prominently magit-show-commit is usually invoked by typing RET while
point is on a commit in a log, but it can also be invoked from the
magit-diff transient prefix.

When such a command is invoked directly, then it is important to reuse
the arguments as specified by the respective buffer-local values,
instead of using the default arguments. Imagine you press RET in a
log to display the commit at point in a different buffer and then use
D to change how the diff is displayed in that buffer. And then you
press RET on another commit to show that instead and the diff
arguments are reset to the default. Not cool; so Magit does not do
that by default.

User Option: magit-prefix-use-buffer-arguments
This option controls whether the infix arguments initially shown in
certain transient prefix commands are based on the arguments that
are currently in effect in the buffer that their suffixes update.

The magit-diff and magit-log transient prefix commands are affected
by this option.

User Option: magit-direct-use-buffer-arguments
This option controls whether certain commands, when invoked directly
(i.e. not as the suffix of a transient prefix command), use the
arguments that are currently active in the buffer that they are
about to update. The alternative is to use the default value for
these arguments, which might change the arguments that are used in
the buffer.

Valid values for both of the above options are:

	always: Always use the set of arguments that is currently active
in the respective buffer, provided that buffer exists of course.

	selected or t: Use the set of arguments from the respective
buffer, but only if it is displayed in a window of the current
frame. This is the default for both variables.

	current: Use the set of arguments from the respective buffer, but
only if it is the current buffer.

	never: Never use the set of arguments from the respective buffer.

I am afraid it gets more complicated still:

	The global diff and log arguments are set for each supported mode
individually. The diff arguments for example have different values
in magit-diff-mode, magit-revision-mode, magit-merge-preview-mode
and magit-status-mode buffers. Setting or saving the value for one
mode does not change the value for other modes. The history however
is shared.

	When magit-show-commit is invoked directly from a log buffer, then
the file filter is picked up from that buffer, not from the revision
buffer or the mode’s global diff arguments.

	Even though they are suffixes of the diff prefix magit-show-commit
and magit-stash-show do not use the diff buffer used by the diff
commands, instead they use the dedicated revision and stash buffers.

At the time you invoke the diff prefix it is unknown to Magit which
of the suffix commands you are going to invoke. While not certain,
more often than not users invoke one of the commands that use the
diff buffer, so the initial infix arguments are those used in that
buffer. However if you invoke one of these commands directly, then
Magit knows that it should use the arguments from the revision resp.
stash buffer.

	The log prefix also features reflog commands, but these commands do
not use the log arguments.

	If magit-show-refs is invoked from a magit-refs-mode buffer, then it
acts as a refresh prefix and therefore unconditionally uses the
buffer’s arguments as initial arguments. If it is invoked elsewhere
with a prefix argument, then it acts as regular prefix and therefore
respects magit-prefix-use-buffer-arguments. If it is invoked
elsewhere without a prefix argument, then it acts as a direct
command and therefore respects magit-direct-use-buffer-arguments.

Completion, Confirmation and the Selection

Action Confirmation

By default many actions that could potentially lead to data loss have
to be confirmed. This includes many very common actions, so this can
quickly become annoying. Many of these actions can be undone and if
you have thought about how to undo certain mistakes, then it should
be safe to disable confirmation for the respective actions.

The option magit-no-confirm can be used to tell Magit to perform
certain actions without the user having to confirm them. Note that
while this option can only be used to disable confirmation for a
specific set of actions, the next section explains another way of
telling Magit to ask fewer questions.

User Option: magit-no-confirm
The value of this option is a list of symbols, representing actions
that do not have to be confirmed by the user before being carried
out.

By default many potentially dangerous commands ask the user for
confirmation. Each of the below symbols stands for an action which,
when invoked unintentionally or without being fully aware of the
consequences, could lead to tears. In many cases there are several
commands that perform variations of a certain action, so we don’t
use the command names but more generic symbols.

	Applying changes:

	discard Discarding one or more changes (i.e. hunks or the
complete diff for a file) loses that change, obviously.

	reverse Reverting one or more changes can usually be undone by
reverting the reversion.

	stage-all-changes, unstage-all-changes When there are both
staged and unstaged changes, then un-/staging everything would
destroy that distinction. Of course that also applies when
un-/staging a single change, but then less is lost and one does
that so often that having to confirm every time would be
unacceptable.

	Files:

	delete When a file that isn’t yet tracked by Git is deleted,
then it is completely lost, not just the last changes. Very
dangerous.

	trash Instead of deleting a file it can also be move to the
system trash. Obviously much less dangerous than deleting it.

Also see option magit-delete-by-moving-to-trash.

	resurrect A deleted file can easily be resurrected by "deleting"
the deletion, which is done using the same command that was used
to delete the same file in the first place.

	untrack Untracking a file can be undone by tracking it again.

	rename Renaming a file can easily be undone.

	Sequences:

	reset-bisect Aborting (known to Git as "resetting") a bisect
operation loses all information collected so far.

	abort-rebase Aborting a rebase throws away all already modified
commits, but it’s possible to restore those from the reflog.

	abort-merge Aborting a merge throws away all conflict
resolutions which have already been carried out by the user.

	merge-dirty Merging with a dirty worktree can make it hard to go
back to the state before the merge was initiated.

	References:

	delete-unmerged-branch Once a branch has been deleted, it can
only be restored using low-level recovery tools provided by Git.
And even then the reflog is gone. The user always has to
confirm the deletion of a branch by accepting the default choice
(or selecting another branch), but when a branch has not been
merged yet, also make sure the user is aware of that.

	delete-pr-remote When deleting a branch that was created from a
pull-request and if no other branches still exist on that
remote, then magit-branch-delete offers to delete the remote
as well. This should be safe because it only happens if no
other refs exist in the remotes namespace, and you can recreate
the remote if necessary.

	drop-stashes Dropping a stash is dangerous because Git stores
stashes in the reflog. Once a stash is removed, there is no
going back without using low-level recovery tools provided by
Git. When a single stash is dropped, then the user always has
to confirm by accepting the default (or selecting another).
This action only concerns the deletion of multiple stashes at
once.

	Publishing:

	set-and-push When pushing to the upstream or the push-remote
and that isn’t actually configured yet, then the user can first
set the target. If s/he confirms the default too quickly, then
s/he might end up pushing to the wrong branch and if the remote
repository is configured to disallow fixing such mistakes, then
that can be quite embarrassing and annoying.

	Edit published history:

Without adding these symbols here, you will be warned before
editing commits that have already been pushed to one of the
branches listed in magit-published-branches.

	amend-published Affects most commands that amend to "HEAD".

	rebase-published Affects commands that perform interactive
rebases. This includes commands from the commit transient that
modify a commit other than "HEAD", namely the various fixup and
squash variants.

	edit-published Affects the commands magit-edit-line-commit and
magit-diff-edit-hunk-commit. These two commands make it quite
easy to accidentally edit a published commit, so you should
think twice before configuring them not to ask for confirmation.

To disable confirmation completely, add all three symbols here or
set magit-published-branches to nil.

	Various:

	kill-process There seldom is a reason to kill a process.

	Global settings:

Instead of adding all of the above symbols to the value of this
option, you can also set it to the atom ‘t’, which has the same
effect as adding all of the above symbols. Doing that most
certainly is a bad idea, especially because other symbols might be
added in the future. So even if you don’t want to be asked for
confirmation for any of these actions, you are still better of
adding all of the respective symbols individually.

When magit-wip-before-change-mode is enabled, then the following
actions can be undone fairly easily: discard, reverse,
stage-all-changes, and unstage-all-changes. If and only if
this mode is enabled, then safe-with-wip has the same effect as
adding all of these symbols individually.

Completion and Confirmation

Many Magit commands ask the user to select from a list of possible
things to act on, while offering the most likely choice as the
default. For many of these commands the default is the thing at
point, provided that it actually is a valid thing to act on. For
many commands that act on a branch, the current branch serves as
the default if there is no branch at point.

These commands combine asking for confirmation and asking for a target
to act on into a single action. The user can confirm the default
target using RET or abort using C-g. This is similar to a y-or-n-p
prompt, but the keys to confirm or abort differ.

At the same time the user is also given the opportunity to select
another target, which is useful because for some commands and/or in
some situations you might want to select the action before selecting
the target by moving to it.

However you might find that for some commands you always want to use
the default target, if any, or even that you want the command to act
on the default without requiring any confirmation at all. The option
magit-dwim-selection can be used to configure certain commands to that
effect.

Note that when the region is active then many commands act on the
things that are selected using a mechanism based on the region, in
many cases after asking for confirmation. This region-based mechanism
is called the "selection" and is described in detail in the next
section. When a selection exists that is valid for the invoked
command, then that command never offers to act on something else, and
whether it asks for confirmation is not controlled by this option.

Also note that Magit asks for confirmation of certain actions that are
not coupled with completion (or the selection). Such dialogs are also
not affected by this option and are described in the previous section.

User Option: magit-dwim-selection
This option can be used to tell certain commands to use the thing
at point instead of asking the user to select a candidate to act
on, with or without confirmation.

The value has the form ((COMMAND nil|PROMPT DEFAULT)...).

	COMMAND is the command that should not prompt for a choice.
To have an effect, the command has to use the function
magit-completing-read or a utility function which in turn uses
that function.

	If the command uses magit-completing-read multiple times, then
PROMPT can be used to only affect one of these uses. PROMPT, if
non-nil, is a regular expression that is used to match against
the PROMPT argument passed to magit-completing-read.

	DEFAULT specifies how to use the default. If it is t, then
the DEFAULT argument passed to magit-completing-read is used
without confirmation. If it is ask, then the user is given
a chance to abort. DEFAULT can also be nil, in which case the
entry has no effect.

The Selection

If the region is active, then many Magit commands act on the things
that are selected using a mechanism based on the region instead of one
single thing. When the region is not active, then these commands act
on the thing at point or read a single thing to act on. This is
described in the previous section — this section only covers how
multiple things are selected, how that is visualized, and how certain
commands behave when that is the case.

Magit’s mechanism for selecting multiple things, or rather sections
that represent these things, is based on the Emacs region, but the
area that Magit considers to be selected is typically larger than the
region and additional restrictions apply.

Magit makes a distinction between a region that qualifies as forming a
valid Magit selection and a region that does not. If the region does
not qualify, then it is displayed as it is in other Emacs buffers. If
the region does qualify as a Magit selection, then the selection is
always visualized, while the region itself is only visualized if it
begins and ends on the same line.

For a region to qualify as a Magit selection, it must begin in the
heading of one section and end in the heading of a sibling section.
Note that if the end of the region is at the very beginning of section
heading (i.e. at the very beginning of a line) then that section is
considered to be inside the selection.

This is not consistent with how the region is normally treated in
Emacs — if the region ends at the beginning of a line, then that line
is outside the region. Due to how Magit visualizes the selection, it
should be obvious that this difference exists.

Not every command acts on every valid selection. Some commands do not
even consider the location of point, others may act on the section at
point but not support acting on the selection, and even commands that
do support the selection of course only do so if it selects things
that they can act on.

This is the main reason why the selection must include the section at
point. Even if a selection exists, the invoked command may disregard
it, in which case it may act on the current section only. It is much
safer to only act on the current section but not the other selected
sections than it is to act on the current section instead of the
selected sections. The latter would be much more surprising and if
the current section always is part of the selection, then that cannot
happen.

Variable: magit-keep-region-overlay
This variable controls whether the region is visualized as usual
even when a valid Magit selection or a hunk-internal region exists.
See the doc-string for more information.

The hunk-internal region

Somewhat related to the Magit selection described in the previous
section is the hunk-internal region.

Like the selection, the hunk-internal region is based on the Emacs
region but causes that region to not be visualized as it would in
other Emacs buffers, and includes the line on which the region ends
even if it ends at the very beginning of that line.

Unlike the selection, which is based on a region that must begin in
the heading of one section and ends in the section of a sibling
section, the hunk-internal region must begin inside the body of a
hunk section and end in the body of the same section.

The hunk-internal region is honored by "apply" commands, which can,
among other targets, act on a hunk. If the hunk-internal region is
active, then such commands act only on the marked part of the hunk
instead of on the complete hunk.

Support for Completion Frameworks

The built-in option completing-read-function specifies the low-level
function used by completing-read to ask a user to select from a list
of choices. Its default value is completing-read-default.
Alternative completion frameworks typically activate themselves by
substituting their own implementation.

Mostly for historic reasons Magit provides a similar option named
magit-completing-read-function, which only controls the low-level
function used by magit-completing-read. This option also makes it
possible to use a different completing mechanism for Magit than for
the rest of Emacs, but doing that is not recommend.

You most likely don’t have to customize the magit-specific option to
use an alternative completion framework. For example, if you enable
ivy-mode, then Magit will respect that, and if you enable helm-mode,
then you are done too.

However if you want to use Ido, then ido-mode won’t do the trick. You
will also have to install the ido-completing-read+ package and use
magit-ido-completing-read as magit-completing-read-function.

User Option: magit-completing-read-function
The value of this variable is the low-level function used to perform
completion by code that uses magit-completing-read (as opposed to
the built-in completing-read).

The default value, magit-builtin-completing-read, is suitable for
the standard completion mechanism, ivy-mode, and helm-mode at least.

The built-in completing-read and completing-read-default are not
suitable to be used here. magit-builtin-completing-read performs
some additional work, and any function used in its place has to do
the same.

Function: magit-builtin-completing-read prompt choices &optional predicate require-match initial-input hist def
This function performs completion using the built-in completing-read
and does some additional magit-specific work.

Function: magit-ido-completing-read prompt choices &optional predicate require-match initial-input hist def
This function performs completion using ido-completing-read+ from the
package by the same name (which you have to explicitly install) and
does some additional magit-specific work.

We have to use ido-completing-read+ instead of the
ido-completing-read that comes with Ido itself, because the latter,
while intended as a drop-in replacement, cannot serve that purpose
because it violates too many of the implicit conventions.

Function: magit-completing-read prompt choices &optional predicate require-match initial-input hist def fallback
This is the function that Magit commands use when they need the user
to select a single thing to act on. The arguments have the same
meaning as for completing-read, except for FALLBACK, which is unique
to this function and is described below.

Instead of asking the user to choose from a list of possible
candidates, this function may just return the default specified by
DEF, with or without requiring user confirmation. Whether that is
the case depends on PROMPT, this-command and magit-dwim-selection.
See the documentation of the latter for more information.

If it does read a value in the minibuffer, then this function acts
similar to completing-read, except for the following:

	COLLECTION must be a list of choices. A function is not
supported.

	If REQUIRE-MATCH is nil and the user exits without a choice, then
nil is returned instead of an empty string.

	If REQUIRE-MATCH is non-nil and the users exits without a choice,
an user-error is raised.

	FALLBACK specifies a secondary default that is only used if the
primary default DEF is nil. The secondary default is not subject
to magit-dwim-selection — if DEF is nil but FALLBACK is not, then
this function always asks the user to choose a candidate, just as
if both defaults were nil.

	": " is appended to PROMPT.

	PROMPT is modified to end with \" (default DEF|FALLBACK): \"
provided that DEF or FALLBACK is non-nil, that neither ivy-mode
nor helm-mode is enabled, and that
magit-completing-read-function is set to its default value of
magit-builtin-completing-read.

Additional Completion Options

User Option: magit-list-refs-sortby
For many commands that read a ref or refs from the user, the value
of this option can be used to control the order of the refs. Valid
values include any key accepted by the --sort flag of git
 for-each-ref. By default, refs are sorted alphabetically by their
full name (e.g., "refs/heads/master").

Running Git

Viewing Git Output

Magit runs Git either for side-effects (e.g. when pushing) or to get
some value (e.g. the name of the current branch).

When Git is run for side-effects, the process output is logged in a
per-repository log buffer, which can be consulted using the
magit-process command when things don’t go as expected.

The output/errors for up to ‘magit-process-log-max’ Git commands are
retained.

	$ (magit-process)

	This commands displays the process buffer for the current
repository.

Inside that buffer, the usual key bindings for navigating and showing
sections are available. There is one additional command.

	k (magit-process-kill)

	This command kills the process represented by the section at point.

Variable: magit-git-debug
This option controls whether additional reporting of git errors is
enabled.

Magit basically calls git for one of these two reasons: for
side-effects or to do something with its standard output.

When git is run for side-effects then its output, including error
messages, go into the process buffer which is shown when using $.

When git’s output is consumed in some way, then it would be too
expensive to also insert it into this buffer, but when this
option is non-nil and git returns with a non-zero exit status,
then at least its standard error is inserted into this buffer.

This is only intended for debugging purposes. Do not enable this
permanently, that would negatively affect performance.

Variable: magit-process-extreme-logging
This option controls whether magit-process-file logs to the
Messages buffer.

Only intended for temporary use when you try to figure out how
Magit uses Git behind the scene. Output that normally goes to
the magit-process buffer continues to go there. Not all output
goes to either of these two buffers.

Git Process Status

When a Git process is running for side-effects, Magit displays an
indicator in the mode line, using the magit-mode-line-process face.

If the Git process exits successfully, the process indicator is
removed from the mode line immediately.

In the case of a Git error, the process indicator is not removed, but
is instead highlighted with the magit-mode-line-process-error face,
and the error details from the process buffer are provided as a
tooltip for mouse users. This error indicator persists in the mode
line until the next magit buffer refresh.

If you do not wish process errors to be indicated in the mode line,
customize the magit-process-display-mode-line-error user option.

Process errors are additionally indicated at the top of the status
buffer.

Running Git Manually

While Magit provides many Emacs commands to interact with Git, it does
not cover everything. In those cases your existing Git knowledge will
come in handy. Magit provides some commands for running arbitrary Git
commands by typing them into the minibuffer, instead of having to
switch to a shell.

	! (magit-run)

	This transient prefix command binds the following suffix commands
and displays them in a temporary buffer until a suffix is invoked.

	! ! (magit-git-command-topdir)

	This command reads a command from the user and executes it in the
top-level directory of the current working tree.

The string "git " is used as initial input when prompting the user
for the command. It can be removed to run another command.

	: (magit-git-command)

	
	! p

	This command reads a command from the user and executes it in
default-directory. With a prefix argument the command is executed
in the top-level directory of the current working tree instead.

The string "git " is used as initial input when prompting the user
for the command. It can be removed to run another command.

	! s (magit-shell-command-topdir)

	This command reads a command from the user and executes it in the
top-level directory of the current working tree.

	! S (magit-shell-command)

	This command reads a command from the user and executes it in
default-directory. With a prefix argument the command is executed
in the top-level directory of the current working tree instead.

User Option: magit-shell-command-verbose-prompt
Whether the prompt, used by the above commands when reading a
shell command, shows the directory in which it will be run.

These suffix commands start external gui tools.

	! k (magit-run-gitk)

	This command runs gitk in the current repository.

	! a (magit-run-gitk-all)

	This command runs gitk --all in the current repository.

	! b (magit-run-gitk-branches)

	This command runs gitk --branches in the current repository.

	! g (magit-run-git-gui)

	This command runs git gui in the current repository.

Git Executable

When Magit calls Git, then it may do so using the absolute path to the
git executable, or using just its name.

When running git locally and the system-type is windows-nt (any
Windows version) or darwin (macOS) then magit-git-executable is set
to an absolute path when Magit is loaded.

On Windows it is necessary to use an absolute path because Git comes
with several wrapper scripts for the actual git binary, which are also
placed on $PATH, and using one of these wrappers instead of the binary
would degrade performance horribly. For some macOS users using just
the name of the executable also performs horribly, so we avoid doing
that on that platform as well. On other platforms, using just the
name seems to work just fine.

Using an absolute path when running git on a remote machine over
Tramp, would be problematic to use an absolute path that is suitable
on the local machine, so a separate option is used to control the name
or path that is used on remote machines.

User Option: magit-git-executable
The git executable used by Magit on the local host. This should be
either the absolute path to the executable, or the string "git" to
let Emacs find the executable itself, using the standard mechanism
for doing such things.

User Option: magit-remote-git-executable
The git executable used by Magit on remote machines over Tramp.
Normally this should be just the string "git". Consider customizing
tramp-remote-path instead of this option.

If Emacs is unable to find the correct executable, then you can
work around that by explicitly setting the value of one of these two
options. Doing that should be considered a kludge; it is better to
make sure that the order in exec-path or tramp-remote-path is correct.

Note that exec-path is set based on the value of the PATH environment
variable that is in effect when Emacs is started. If you set PATH in
your shell’s init files, then that only has an effect on Emacs if you
start it from that shell (because the environment of a process is only
passed to its child processes, not to arbitrary other processes). If
that is not how you start Emacs, then the exec-path-from-shell package
can help; though honestly I consider that a kludge too.

The command magit-debug-git-executable can be useful to find out where
Emacs is searching for git.

	M-x magit-debug-git-executable

	This command displays a buffer with information about
magit-git-executable and magit-remote-git-executable.

	M-x magit-version

	This command shows the currently used versions of Magit, Git, and
Emacs in the echo area. Non-interactively this just returns the
Magit version.

Global Git Arguments

User Option: magit-git-global-arguments
The arguments set here are used every time the git executable is run
as a subprocess. They are placed right after the executable itself
and before the git command - as in git HERE... COMMAND REST. For
valid arguments see

Be careful what you add here, especially if you are using Tramp to
connect to servers with ancient Git versions. Never remove anything
that is part of the default value, unless you really know what you
are doing. And think very hard before adding something; it will be
used every time Magit runs Git for any purpose.

Chapter 5. Inspecting

The functionality provided by Magit can be roughly divided into three
groups: inspecting existing data, manipulating existing data or adding
new data, and transferring data. Of course that is a rather crude
distinction that often falls short, but it’s more useful than no
distinction at all. This section is concerned with inspecting data,
the next two with manipulating and transferring it. Then follows a
section about miscellaneous functionality, which cannot easily be fit
into this distinction.

Of course other distinctions make sense too, e.g. Git’s distinction
between porcelain and plumbing commands, which for the most part is
equivalent to Emacs’ distinction between interactive commands and
non-interactive functions. All of the sections mentioned before are
mainly concerned with the porcelain – Magit’s plumbing layer is
described later.

Status Buffer

While other Magit buffers contain e.g. one particular diff or one
particular log, the status buffer contains the diffs for staged and
unstaged changes, logs for unpushed and unpulled commits, lists of
stashes and untracked files, and information related to the current
branch.

During certain incomplete operations – for example when a merge
resulted in a conflict – additional information is displayed that
helps proceeding with or aborting the operation.

The command magit-status displays the status buffer belonging to the
current repository in another window. This command is used so often
that it should be bound globally. We recommend using C-x g:

(global-set-key (kbd "C-x g") 'magit-status)

	C-x g (magit-status)

	When invoked from within an existing Git repository, then this
command shows the status of that repository in a buffer.

If the current directory isn’t located within a Git repository, then
this command prompts for an existing repository or an arbitrary
directory, depending on the option magit-repository-directories, and
the status for the selected repository is shown instead.

	If that option specifies any existing repositories, then the user
is asked to select one of them.

	Otherwise the user is asked to select an arbitrary directory using
regular file-name completion. If the selected directory is the
top-level directory of an existing working tree, then the status
buffer for that is shown.

	Otherwise the user is offered to initialize the selected directory
as a new repository. After creating the repository its status
buffer is shown.

These fallback behaviors can also be forced using one or more
prefix arguments:

	With two prefix arguments (or more precisely a numeric prefix
value of 16 or greater) an arbitrary directory is read, which is
then acted on as described above. The same could be accomplished
using the command magit-init.

	With a single prefix argument an existing repository is read from
the user, or if no repository can be found based on the value of
magit-repository-directories, then the behavior is the same as with
two prefix arguments.

User Option: magit-repository-directories
List of directories that are Git repositories or contain Git
repositories.

Each element has the form (DIRECTORY . DEPTH). DIRECTORY has to be
a directory or a directory file-name, a string. DEPTH, an integer,
specifies the maximum depth to look for Git repositories. If it is
0, then only add DIRECTORY itself.

This option controls which repositories are being listed by
magit-list-repositories. It also affects magit-status (which see)
in potentially surprising ways (see above).

Command: magit-status-quick
This command is an alternative to magit-status that usually avoids
refreshing the status buffer.

If the status buffer of the current Git repository exists but isn’t
being displayed in the selected frame, then it is displayed without
being refreshed.

If the status buffer is being displayed in the selected frame,
then this command refreshes it.

Prefix arguments have the same meaning as for magit-status,
and additionally cause the buffer to be refresh.

To use this command add this to your init file:

(global-set-key (kbd "C-x g") 'magit-status-quick).

If you do that and then for once want to redisplay the buffer and
also immediately refresh it, then type C-x g followed by g.

A possible alternative command is magit-display-repository-buffer.
It supports displaying any existing Magit buffer that belongs to the
current repository; not just the status buffer.

Command: ido-enter-magit-status
From an Ido prompt used to open a file, instead drop into
magit-status. This is similar to ido-magic-delete-char, which,
despite its name, usually causes a Dired buffer to be created.

To make this command available, use something like:

(add-hook 'ido-setup-hook
 (lambda ()
 (define-key ido-completion-map
 (kbd \"C-x g\") 'ido-enter-magit-status)))

Starting with Emacs 25.1 the Ido keymaps are defined just once
instead of every time Ido is invoked, so now you can modify it
like pretty much every other keymap:

(define-key ido-common-completion-map
 (kbd \"C-x g\") 'ido-enter-magit-status)

Status Sections

The contents of status buffers is controlled using the hook
magit-status-sections-hook. See Section Hooks to learn about such
hooks and how to customize them.

User Option: magit-status-sections-hook
Hook run to insert sections into a status buffer.

The first function on that hook by default is
magit-insert-status-headers; it is described in the next section.
By default the following functions are also members of that hook:

Function: magit-insert-merge-log
Insert section for the on-going merge. Display the heads that are
being merged. If no merge is in progress, do nothing.

Function: magit-insert-rebase-sequence
Insert section for the on-going rebase sequence.
If no such sequence is in progress, do nothing.

Function: magit-insert-am-sequence
Insert section for the on-going patch applying sequence.
If no such sequence is in progress, do nothing.

Function: magit-insert-sequencer-sequence
Insert section for the on-going cherry-pick or revert sequence.
If no such sequence is in progress, do nothing.

Function: magit-insert-bisect-output
While bisecting, insert section with output from git bisect.

Function: magit-insert-bisect-rest
While bisecting, insert section visualizing the bisect state.

Function: magit-insert-bisect-log
While bisecting, insert section logging bisect progress.

Function: magit-insert-untracked-files
Maybe insert a list or tree of untracked files.

Do so depending on the value of status.showUntrackedFiles. Note
that even if the value is all, Magit still initially only shows
directories. But the directory sections can then be expanded using
TAB.

Function: magit-insert-unstaged-changes
Insert section showing unstaged changes.

Function: magit-insert-staged-changes
Insert section showing staged changes.

Function: magit-insert-stashes &optional ref heading
Insert the stashes section showing reflog for "refs/stash".
If optional REF is non-nil show reflog for that instead.
If optional HEADING is non-nil use that as section heading
instead of "Stashes:".

Function: magit-insert-unpulled-from-upstream
Insert section showing commits that haven’t been pulled from the
upstream branch yet.

Function: magit-insert-unpulled-from-pushremote
Insert section showing commits that haven’t been pulled from the
push-remote branch yet.

Function: magit-insert-unpushed-to-upstream
Insert section showing commits that haven’t been pushed to the
upstream yet.

Function: magit-insert-unpushed-to-pushremote
Insert section showing commits that haven’t been pushed to the
push-remote yet.

The following functions can also be added to the above hook:

Function: magit-insert-tracked-files
Insert a tree of tracked files.

Function: magit-insert-ignored-files
Insert a tree of ignored files.
Its possible to limit the logs in the current buffer to a certain
directory using D = f <DIRECTORY> RET g. If you do that, then that
that also affects this command.

The log filter can be used to limit to multiple files. In that case
this function only respects the first of the files and only if it is
a directory.

Function: magit-insert-skip-worktree-files
Insert a tree of skip-worktree files.
If the first element of magit-buffer-diff-files is a
directory, then limit the list to files below that. The value
of that variable can be set using D -- DIRECTORY RET g.

Function: magit-insert-assumed-unchanged-files
Insert a tree of files that are assumed to be unchanged.
If the first element of magit-buffer-diff-files is a
directory, then limit the list to files below that. The value
of that variable can be set using D -- DIRECTORY RET g.

Function: magit-insert-unpulled-or-recent-commits
Insert section showing unpulled or recent commits.
If an upstream is configured for the current branch and it is
ahead of the current branch, then show the missing commits.
Otherwise, show the last magit-log-section-commit-count
commits.

Function: magit-insert-recent-commits
Insert section showing the last magit-log-section-commit-count
commits.

User Option: magit-log-section-commit-count
How many recent commits magit-insert-recent-commits and
magit-insert-unpulled-or-recent-commits (provided there are no
unpulled commits) show.

Function: magit-insert-unpulled-cherries
Insert section showing unpulled commits.
Like magit-insert-unpulled-commits but prefix each commit
that has not been applied yet (i.e. a commit with a patch-id
not shared with any local commit) with "+", and all others
with "-".

Function: magit-insert-unpushed-cherries
Insert section showing unpushed commits.
Like magit-insert-unpushed-commits but prefix each commit
which has not been applied to upstream yet (i.e. a commit with
a patch-id not shared with any upstream commit) with "+" and
all others with "-".

See References Buffer for some more section inserters, which could be
used here.

Status Header Sections

The contents of status buffers is controlled using the hook
magit-status-sections-hook (see Status Sections).

By default magit-insert-status-headers is the first member of that
hook variable.

Function: magit-insert-status-headers
Insert headers sections appropriate for magit-status-mode buffers.
The sections are inserted by running the functions on the hook
magit-status-headers-hook.

User Option: magit-status-headers-hook
Hook run to insert headers sections into the status buffer.

This hook is run by magit-insert-status-headers, which in turn has
to be a member of magit-status-sections-hook to be used at all.

By default the following functions are members of the above hook:

Function: magit-insert-error-header
Insert a header line showing the message about the Git error that
just occurred.

This function is only aware of the last error that occur when Git
was run for side-effects. If, for example, an error occurs while
generating a diff, then that error won’t be inserted. Refreshing
the status buffer causes this section to disappear again.

Function: magit-insert-diff-filter-header
Insert a header line showing the effective diff filters.

Function: magit-insert-head-branch-header
Insert a header line about the current branch or detached HEAD.

Function: magit-insert-upstream-branch-header
Insert a header line about the branch that is usually pulled into
the current branch.

Function: magit-insert-push-branch-header
Insert a header line about the branch that the current branch is
usually pushed to.

Function: magit-insert-tags-header
Insert a header line about the current and/or next tag, along with
the number of commits between the tag and HEAD.

The following functions can also be added to the above hook:

Function: magit-insert-repo-header
Insert a header line showing the path to the repository top-level.

Function: magit-insert-remote-header
Insert a header line about the remote of the current branch.

If no remote is configured for the current branch, then fall back
showing the "origin" remote, or if that does not exist the first
remote in alphabetic order.

Function: magit-insert-user-header
Insert a header line about the current user.

Status Module Sections

The contents of status buffers is controlled using the hook
magit-status-sections-hook (see Status Sections).

By default magit-insert-modules is not a member of that hook
variable.

Function: magit-insert-modules
Insert submodule sections.

Hook magit-module-sections-hook controls which module sections are
inserted, and option magit-module-sections-nested controls whether
they are wrapped in an additional section.

User Option: magit-module-sections-hook
Hook run by magit-insert-modules.

User Option: magit-module-sections-nested
This option controls whether magit-insert-modules wraps inserted
sections in an additional section.

If this is non-nil, then only a single top-level section is inserted.
If it is nil, then all sections listed in magit-module-sections-hook
become top-level sections.

Function: magit-insert-modules-overview
Insert sections for all submodules. For each section insert the
path, the branch, and the output of git describe --tags,
or, failing that, the abbreviated HEAD commit hash.

Press RET on such a submodule section to show its own status buffer.
Press RET on the "Modules" section to display a list of submodules
in a separate buffer. This shows additional information not
displayed in the super-repository’s status buffer.

Function: magit-insert-modules-unpulled-from-upstream
Insert sections for modules that haven’t been pulled from the
upstream yet. These sections can be expanded to show the respective
commits.

Function: magit-insert-modules-unpulled-from-pushremote
Insert sections for modules that haven’t been pulled from the
push-remote yet. These sections can be expanded to show the
respective commits.

Function: magit-insert-modules-unpushed-to-upstream
Insert sections for modules that haven’t been pushed to the upstream
yet. These sections can be expanded to show the respective commits.

Function: magit-insert-modules-unpushed-to-pushremote
Insert sections for modules that haven’t been pushed to the
push-remote yet. These sections can be expanded to show the
respective commits.

Status Options

User Option: magit-status-refresh-hook
Hook run after a status buffer has been refreshed.

User Option: magit-status-margin
This option specifies whether the margin is initially shown in
Magit-Status mode buffers and how it is formatted.

The value has the form (INIT STYLE WIDTH AUTHOR AUTHOR-WIDTH).

	If INIT is non-nil, then the margin is shown initially.

	STYLE controls how to format the author or committer date. It can
be one of age (to show the age of the commit), age-abbreviated (to
abbreviate the time unit to a character), or a string (suitable
for format-time-string) to show the actual date. Option
magit-log-margin-show-committer-date controls which date is being
displayed.

	WIDTH controls the width of the margin. This exists for forward
compatibility and currently the value should not be changed.

	AUTHOR controls whether the name of the author is also shown by
default.

	AUTHOR-WIDTH has to be an integer. When the name of the author
is shown, then this specifies how much space is used to do so.

Also see the proceeding section for more options concerning status
buffers.

Repository List

Command: magit-list-repositories
This command displays a list of repositories in a separate buffer.

The options magit-repository-directories and
magit-repository-directories-depth control which repositories are
displayed.

User Option: magit-repolist-columns
This option controls what columns are displayed by the command
magit-list-repositories and how they are displayed.

Each element has the form (HEADER WIDTH FORMAT PROPS).

HEADER is the string displayed in the header. WIDTH is the width of
the column. FORMAT is a function that is called with one argument,
the repository identification (usually its basename), and with
default-directory bound to the toplevel of its working tree. It
has to return a string to be inserted or nil. PROPS is an alist
that supports the keys :right-align and :pad-right.

You may wish to display a range of numeric columns using just one
character per column and without any padding between columns, in
which case you should use an appropriate HEADER, set WIDTH to 1,
and set :pad-right to 0. + is substituted for numbers higher
than 9.

The following functions can be added to the above option:

Function: magit-repolist-column-ident
This function inserts the identification of the repository. Usually
this is just its basename.

Function: magit-repolist-column-path
This function inserts the absolute path of the repository.

Function: magit-repolist-column-version
This function inserts a description of the repository’s HEAD revision.

Function: magit-repolist-column-branch
This function inserts the name of the current branch.

Function: magit-repolist-column-upstream
This function inserts the name of the upstream branch of the current
branch.

Function: magit-repolist-column-branches
This function inserts the number of branches.

Function: magit-repolist-column-stashes
This function inserts the number of stashes.

Function: magit-repolist-column-flag
This function inserts a flag as specified by
magit-repolist-column-flag-alist.

By default this indicates whether there are uncommitted changes.

	N if there is at least one untracked file.

	U if there is at least one unstaged file.

	S if there is at least one staged file.

Only the first one of these that applies is shown.

Function: magit-repolist-column-unpulled-from-upstream
This function inserts the number of upstream commits not in the
current branch.

Function: magit-repolist-column-unpulled-from-pushremote
This function inserts the number of commits in the push branch but
not the current branch.

Function: magit-repolist-column-unpushed-to-upstream
This function inserts the number of commits in the current branch
but not its upstream.

Function: magit-repolist-column-unpushed-to-pushremote
This function inserts the number of commits in the current branch
but not its push branch.

Logging

The status buffer contains logs for the unpushed and unpulled commits,
but that obviously isn’t enough. The transient prefix command
magit-log, on l, features several suffix commands, which show a
specific log in a separate log buffer.

Like other transient prefix commands, magit-log also features several
infix arguments that can be changed before invoking one of the suffix
commands. However, in the case of the log transient, these arguments
may be taken from those currently in use in the current repository’s
log buffer, depending on the value of magit-prefix-use-buffer-arguments
(see Transient Arguments and Buffer Variables).

For information about the various arguments, see

The switch ++order=VALUE is converted to one of --author-date-order,
--date-order, or --topo-order before being passed to git log.

The log transient also features several reflog commands. See Reflog.

	l (magit-log)

	This transient prefix command binds the following suffix commands
along with the appropriate infix arguments and displays them in a
temporary buffer until a suffix is invoked.

	l l (magit-log-current)

	Show log for the current branch. When HEAD is detached or with a
prefix argument, show log for one or more revs read from the
minibuffer.

	l o (magit-log-other)

	Show log for one or more revs read from the minibuffer. The user
can input any revision or revisions separated by a space, or even
ranges, but only branches, tags, and a representation of the
commit at point are available as completion candidates.

	l h (magit-log-head)

	Show log for HEAD.

	l L (magit-log-branches)

	Show log for all local branches and HEAD.

	l b (magit-log-all-branches)

	Show log for all local and remote branches and HEAD.

	l a (magit-log-all)

	Show log for all references and HEAD.

Two additional commands that show the log for the file or blob that is
being visited in the current buffer exists, see Commands for Buffers Visiting Files. The command magit-cherry also shows a log, see
Cherries.

Refreshing Logs

The transient prefix command magit-log-refresh, on L, can be used to
change the log arguments used in the current buffer, without changing
which log is shown. This works in dedicated log buffers, but also in
the status buffer.

	L (magit-log-refresh)

	This transient prefix command binds the following suffix commands
along with the appropriate infix arguments and displays them in a
temporary buffer until a suffix is invoked.

	L g (magit-log-refresh)

	This suffix command sets the local log arguments for the current
buffer.

	L s (magit-log-set-default-arguments)

	This suffix command sets the default log arguments for buffers of
the same type as that of the current buffer. Other existing buffers
of the same type are not affected because their local values have
already been initialized.

	L w (magit-log-save-default-arguments)

	This suffix command sets the default log arguments for buffers of
the same type as that of the current buffer, and saves the value for
future sessions. Other existing buffers of the same type are not
affected because their local values have already been initialized.

	L t (magit-toggle-margin)

	Show or hide the margin.

Log Buffer

	L (magit-log-refresh)

	This transient prefix command binds the following suffix commands
along with the appropriate infix arguments and displays them in a
temporary buffer until a suffix is invoked.

See Refreshing Logs.

	q (magit-log-bury-buffer)

	Bury the current buffer or the revision buffer in the same frame.
Like magit-mode-bury-buffer (which see) but with a negative prefix
argument instead bury the revision buffer, provided it is displayed
in the current frame.

	C-c C-b (magit-go-backward)

	Move backward in current buffer’s history.

	C-c C-f (magit-go-forward)

	Move forward in current buffer’s history.

	C-c C-n (magit-log-move-to-parent)

	Move to a parent of the current commit. By default, this is the
first parent, but a numeric prefix can be used to specify another
parent.

	j (magit-log-move-to-revision)

	Read a revision and move to it in current log buffer.

If the chosen reference or revision isn’t being displayed in
the current log buffer, then inform the user about that and do
nothing else.

If invoked outside any log buffer, then display the log buffer
of the current repository first; creating it if necessary.

	SPC (magit-diff-show-or-scroll-up)

	Update the commit or diff buffer for the thing at point.

Either show the commit or stash at point in the appropriate buffer,
or if that buffer is already being displayed in the current frame
and contains information about that commit or stash, then instead
scroll the buffer up. If there is no commit or stash at point, then
prompt for a commit.

	DEL (magit-diff-show-or-scroll-down)

	Update the commit or diff buffer for the thing at point.

Either show the commit or stash at point in the appropriate buffer,
or if that buffer is already being displayed in the current frame
and contains information about that commit or stash, then instead
scroll the buffer down. If there is no commit or stash at point,
then prompt for a commit.

	= (magit-log-toggle-commit-limit)

	Toggle the number of commits the current log buffer is limited to.
If the number of commits is currently limited, then remove that
limit. Otherwise set it to 256.

	+ (magit-log-double-commit-limit)

	Double the number of commits the current log buffer is limited to.

	- (magit-log-half-commit-limit)

	Half the number of commits the current log buffer is limited to.

User Option: magit-log-auto-more
Insert more log entries automatically when moving past the last
entry. Only considered when moving past the last entry with
magit-goto-*-section commands.

User Option: magit-log-show-refname-after-summary
Whether to show the refnames after the commit summaries. This is
useful if you use really long branch names.

Magit displays references in logs a bit differently from how Git does
it.

Local branches are blue and remote branches are green. Of course that
depends on the used theme, as do the colors used for other types of
references. The current branch has a box around it, as do remote
branches that are their respective remote’s HEAD branch.

If a local branch and its push-target point at the same commit, then
their names are combined to preserve space and to make that
relationship visible. For example:

origin/feature
[green][blue-]

instead of

feature origin/feature
[blue-] [green-------]

Also note that while the transient features the --show-signature
argument, that won’t actually be used when enabled, because Magit
defaults to use just one line per commit. Instead the commit
colorized to indicate the validity of the signed commit object,
using the faces named magit-signature-* (which see).

For a description of magit-log-margin see Log Margin.

Log Margin

In buffers which show one or more logs, it is possible to show
additional information about each commit in the margin. The options
used to configure the margin are named magit-INFIX-margin, where INFIX
is the same as in the respective major-mode magit-INFIX-mode. In
regular log buffers that would be magit-log-margin.

User Option: magit-log-margin
This option specifies whether the margin is initially shown in
Magit-Log mode buffers and how it is formatted.

The value has the form (INIT STYLE WIDTH AUTHOR AUTHOR-WIDTH).

	If INIT is non-nil, then the margin is shown initially.

	STYLE controls how to format the author or committer date. It can
be one of age (to show the age of the commit), age-abbreviated (to
abbreviate the time unit to a character), or a string (suitable
for format-time-string) to show the actual date. Option
magit-log-margin-show-committer-date controls which date is being
displayed.

	WIDTH controls the width of the margin. This exists for forward
compatibility and currently the value should not be changed.

	AUTHOR controls whether the name of the author is also shown by
default.

	AUTHOR-WIDTH has to be an integer. When the name of the author
is shown, then this specifies how much space is used to do so.

You can change the STYLE and AUTHOR-WIDTH of all magit-INFIX-margin
options to the same values by customizing magit-log-margin before
magit is loaded. If you do that, then the respective values for the
other options will default to what you have set for that variable.
Likewise if you set INIT in magit-log-margin to nil, then that is used
in the default of all other options. But setting it to t, i.e.
re-enforcing the default for that option, does not carry to other
options.

User Option: magit-log-margin-show-committer-date
This option specifies whether to show the committer date in the
margin. This option only controls whether the committer date is
displayed instead of the author date. Whether some date is
displayed in the margin and whether the margin is displayed at all
is controlled by other options.

	L (magit-margin-settings)

	This transient prefix command binds the following suffix commands,
each of which changes the appearance of the margin in some way.

In some buffers that support the margin, L is instead bound to
magit-log-refresh, but that transient features the same commands, and
then some other unrelated commands.

	L L (magit-toggle-margin)

	This command shows or hides the margin.

	L l (magit-cycle-margin-style)

	This command cycles the style used for the margin.

	L d (magit-toggle-margin-details)

	This command shows or hides details in the margin.

Select from Log

When the user has to select a recent commit that is reachable from
HEAD, using regular completion would be inconvenient (because most
humans cannot remember hashes or "HEAD~5", at least not without double
checking). Instead a log buffer is used to select the commit, which
has the advantage that commits are presented in order and with the
commit message.

Such selection logs are used when selecting the beginning of a rebase
and when selecting the commit to be squashed into.

In addition to the key bindings available in all log buffers, the
following additional key bindings are available in selection log
buffers:

	C-c C-c (magit-log-select-pick)

	Select the commit at point and act on it. Call
magit-log-select-pick-function with the selected commit as
argument.

	C-c C-k (magit-log-select-quit)

	Abort selecting a commit, don’t act on any commit.

User Option: magit-log-select-margin
This option specifies whether the margin is initially shown in
Magit-Log-Select mode buffers and how it is formatted.

The value has the form (INIT STYLE WIDTH AUTHOR AUTHOR-WIDTH).

	If INIT is non-nil, then the margin is shown initially.

	STYLE controls how to format the author or committer date. It can
be one of age (to show the age of the commit), age-abbreviated (to
abbreviate the time unit to a character), or a string (suitable
for format-time-string) to show the actual date. Option
magit-log-margin-show-committer-date controls which date is being
displayed.

	WIDTH controls the width of the margin. This exists for forward
compatibility and currently the value should not be changed.

	AUTHOR controls whether the name of the author is also shown by
default.

	AUTHOR-WIDTH has to be an integer. When the name of the author
is shown, then this specifies how much space is used to do so.

Reflog

Also see

These reflog commands are available from the log transient. See
Logging.

	l r (magit-reflog-current)

	Display the reflog of the current branch.

	l O (magit-reflog-other)

	Display the reflog of a branch or another ref.

	l H (magit-reflog-head)

	Display the HEAD reflog.

User Option: magit-reflog-margin
This option specifies whether the margin is initially shown in
Magit-Reflog mode buffers and how it is formatted.

The value has the form (INIT STYLE WIDTH AUTHOR AUTHOR-WIDTH).

	If INIT is non-nil, then the margin is shown initially.

	STYLE controls how to format the author or committer date. It can
be one of age (to show the age of the commit), age-abbreviated (to
abbreviate the time unit to a character), or a string (suitable
for format-time-string) to show the actual date. Option
magit-log-margin-show-committer-date controls which date is being
displayed.

	WIDTH controls the width of the margin. This exists for forward
compatibility and currently the value should not be changed.

	AUTHOR controls whether the name of the author is also shown by
default.

	AUTHOR-WIDTH has to be an integer. When the name of the author
is shown, then this specifies how much space is used to do so.

Cherries

Cherries are commits that haven’t been applied upstream (yet), and are
usually visualized using a log. Each commit is prefixed with - if it
has an equivalent in the upstream and + if it does not, i.e. if it is
a cherry.

The command magit-cherry shows cherries for a single branch, but the
references buffer (see References Buffer) can show cherries for
multiple "upstreams" at once.

Also see

	Y (magit-cherry)

	Show commits that are in a certain branch but that have not been
merged in the upstream branch.

User Option: magit-cherry-margin
This option specifies whether the margin is initially shown in
Magit-Cherry mode buffers and how it is formatted.

The value has the form (INIT STYLE WIDTH AUTHOR AUTHOR-WIDTH).

	If INIT is non-nil, then the margin is shown initially.

	STYLE controls how to format the author or committer date. It can
be one of age (to show the age of the commit), age-abbreviated (to
abbreviate the time unit to a character), or a string (suitable
for format-time-string) to show the actual date. Option
magit-log-margin-show-committer-date controls which date is being
displayed.

	WIDTH controls the width of the margin. This exists for forward
compatibility and currently the value should not be changed.

	AUTHOR controls whether the name of the author is also shown by
default.

	AUTHOR-WIDTH has to be an integer. When the name of the author
is shown, then this specifies how much space is used to do so.

Diffing

The status buffer contains diffs for the staged and unstaged commits,
but that obviously isn’t enough. The transient prefix command
magit-diff, on d, features several suffix commands, which show a
specific diff in a separate diff buffer.

Like other transient prefix commands, magit-diff also features several
infix arguments that can be changed before invoking one of the suffix
commands. However, in the case of the diff transient, these arguments may
be taken from those currently in use in the current repository’s diff
buffer, depending on the value of magit-prefix-use-buffer-arguments
(see Transient Arguments and Buffer Variables).

Also see

	d (magit-diff)

	This transient prefix command binds the following suffix commands
along with the appropriate infix arguments and displays them in a
temporary buffer until a suffix is invoked.

	d d (magit-diff-dwim)

	Show changes for the thing at point.

	d r (magit-diff-range)

	Show differences between two commits.

RANGE should be a range (A..B or A…B) but can also be a single
commit. If one side of the range is omitted, then it defaults to
HEAD. If just a commit is given, then changes in the working tree
relative to that commit are shown.

If the region is active, use the revisions on the first and last
line of the region. With a prefix argument, instead of diffing the
revisions, choose a revision to view changes along, starting at the
common ancestor of both revisions (i.e., use a "…" range).

	d w (magit-diff-working-tree)

	Show changes between the current working tree and the HEAD commit.
With a prefix argument show changes between the working tree and a
commit read from the minibuffer.

	d s (magit-diff-staged)

	Show changes between the index and the HEAD commit. With a prefix
argument show changes between the index and a commit read from the
minibuffer.

	d u (magit-diff-unstaged)

	Show changes between the working tree and the index.

	d p (magit-diff-paths)

	Show changes between any two files on disk.

All of the above suffix commands update the repository’s diff buffer.
The diff transient also features two commands which show differences
in another buffer:

	d c (magit-show-commit)

	Show the commit at point. If there is no commit at point or with a
prefix argument, prompt for a commit.

	d t (magit-stash-show)

	Show all diffs of a stash in a buffer.

Two additional commands that show the diff for the file or blob that
is being visited in the current buffer exists, see Commands for Buffers Visiting Files.

Refreshing Diffs

The transient prefix command magit-diff-refresh, on D, can be used to
change the diff arguments used in the current buffer, without changing
which diff is shown. This works in dedicated diff buffers, but also
in the status buffer.

	D (magit-diff-refresh)

	This transient prefix command binds the following suffix commands
along with the appropriate infix arguments and displays them in a
temporary buffer until a suffix is invoked.

	D g (magit-diff-refresh)

	This suffix command sets the local diff arguments for the current
buffer.

	D s (magit-diff-set-default-arguments)

	This suffix command sets the default diff arguments for buffers of
the same type as that of the current buffer. Other existing buffers
of the same type are not affected because their local values have
already been initialized.

	D w (magit-diff-save-default-arguments)

	This suffix command sets the default diff arguments for buffers of
the same type as that of the current buffer, and saves the value for
future sessions. Other existing buffers of the same type are not
affected because their local values have already been initialized.

	D t (magit-diff-toggle-refine-hunk)

	This command toggles hunk refinement on or off.

	D r (magit-diff-switch-range-type)

	This command converts the diff range type from "revA..revB" to
"revB…revA", or vice versa.

	D f (magit-diff-flip-revs)

	This command swaps revisions in the diff range from "revA..revB"
to "revB..revA", or vice versa.

	D F (magit-diff-toggle-file-filter)

	This command toggles the file restriction of the diffs in the
current buffer, allowing you to quickly switch between viewing all
the changes in the commit and the restricted subset. As a special
case, when this command is called from a log buffer, it toggles the
file restriction in the repository’s revision buffer, which is
useful when you display a revision from a log buffer that is
restricted to a file or files.

In addition to the above transient, which allows changing any of the
supported arguments, there also exist some commands that change only
a particular argument.

	- (magit-diff-less-context)

	This command decreases the context for diff hunks by COUNT lines.

	+ (magit-diff-more-context)

	This command increases the context for diff hunks by COUNT lines.

	0 (magit-diff-default-context)

	This command resets the context for diff hunks to the default height.

The following commands quickly change what diff is being displayed
without having to using one of the diff transient.

	C-c C-d (magit-diff-while-committing)

	While committing, this command shows the changes that are about to
be committed. While amending, invoking the command again toggles
between showing just the new changes or all the changes that will be
committed.

This binding is available in the diff buffer as well as the commit
message buffer.

	C-c C-b (magit-go-backward)

	This command moves backward in current buffer’s history.

	C-c C-f (magit-go-forward)

	This command moves forward in current buffer’s history.

Commands Available in Diffs

Some commands are only available if point is inside a diff.

magit-diff-visit-file and related commands visit the appropriate
version of the file that the diff at point is about. Likewise
magit-diff-visit-worktree-file and related commands visit the worktree
version of the file that the diff at point is about. See Visiting Files and Blobs from a Diff for more information and the key bindings.

	C-c C-t (magit-diff-trace-definition)

	This command shows a log for the definition at point.

User Option: magit-log-trace-definition-function
The function specified by this option is used by
magit-log-trace-definition to determine the function at point. For
major-modes that have special needs, you could set the local value
using the mode’s hook.

	C-c C-e (magit-diff-edit-hunk-commit)

	From a hunk, this command edits the respective commit and visits
the file.

First it visits the file being modified by the hunk at the correct
location using magit-diff-visit-file. This actually visits a blob.
When point is on a diff header, not within an individual hunk, then
this visits the blob the first hunk is about.

Then it invokes magit-edit-line-commit, which uses an interactive
rebase to make the commit editable, or if that is not possible
because the commit is not reachable from HEAD by checking out that
commit directly. This also causes the actual worktree file to be
visited.

Neither the blob nor the file buffer are killed when finishing
the rebase. If that is undesirable, then it might be better to
use magit-rebase-edit-command instead of this command.

	j (magit-jump-to-diffstat-or-diff)

	This command jumps to the diffstat or diff. When point is on a file
inside the diffstat section, then jump to the respective diff
section. Otherwise, jump to the diffstat section or a child
thereof.

The next two commands are not specific to Magit-Diff mode (or and
Magit buffer for that matter), but it might be worth pointing out
that they are available here too.

	SPC (scroll-up)

	This command scrolls text upward.

	DEL (scroll-down)

	This command scrolls text downward.

Diff Options

User Option: magit-diff-refine-hunk
Whether to show word-granularity differences within diff hunks.

	nil Never show fine differences.

	t Show fine differences for the current diff hunk only.

	all Show fine differences for all displayed diff hunks.

User Option: magit-diff-refine-ignore-whitespace
Whether to ignore whitespace changes in word-granularity
differences.

User Option: magit-diff-adjust-tab-width
Whether to adjust the width of tabs in diffs.

Determining the correct width can be expensive if it requires
opening large and/or many files, so the widths are cached in the
variable magit-diff--tab-width-cache. Set that to nil to invalidate
the cache.

	nil Never adjust tab width. Use ‘tab-width’s value from the Magit
buffer itself instead.

	t If the corresponding file-visiting buffer exits, then use
tab-width’s value from that buffer. Doing this is cheap, so this
value is used even if a corresponding cache entry exists.

	always If there is no such buffer, then temporarily visit the file
to determine the value.

	NUMBER Like always, but don’t visit files larger than NUMBER
bytes.

User Option: magit-diff-paint-whitespace
Specify where to highlight whitespace errors.

See magit-diff-highlight-trailing,
magit-diff-highlight-indentation. The symbol t means in all
diffs, status means only in the status buffer, and nil means
nowhere.

	nil Never highlight whitespace errors.

	t Highlight whitespace errors everywhere.

	uncommitted Only highlight whitespace errors in diffs showing
uncommitted changes. For backward compatibility status is treated
as a synonym.

User Option: magit-diff-paint-whitespace-lines
Specify in what kind of lines to highlight whitespace errors.

	t Highlight only in added lines.

	both Highlight in added and removed lines.

	all Highlight in added, removed and context lines.

User Option: magit-diff-highlight-trailing
Whether to highlight whitespace at the end of a line in diffs. Used
only when magit-diff-paint-whitespace is non-nil.

User Option: magit-diff-highlight-indentation
This option controls whether to highlight the indentation in case it
used the "wrong" indentation style. Indentation is only highlighted
if magit-diff-paint-whitespace is also non-nil.

The value is an alist of the form ((REGEXP . INDENT)...). The path
to the current repository is matched against each element in reverse
order. Therefore if a REGEXP matches, then earlier elements are not
tried.

If the used INDENT is tabs, highlight indentation with tabs. If
INDENT is an integer, highlight indentation with at least that many
spaces. Otherwise, highlight neither.

User Option: magit-diff-hide-trailing-cr-characters
Whether to hide ^M characters at the end of a line in diffs.

User Option: magit-diff-highlight-hunk-region-functions
This option specifies the functions used to highlight the
hunk-internal region.

magit-diff-highlight-hunk-region-dim-outside overlays the outside of
the hunk internal selection with a face that causes the added and
removed lines to have the same background color as context lines.
This function should not be removed from the value of this option.

magit-diff-highlight-hunk-region-using-overlays and
magit-diff-highlight-hunk-region-using-underline emphasize the
region by placing delimiting horizontal lines before and after it.
Both of these functions have glitches which cannot be fixed due to
limitations of Emacs’ display engine. For more information see
https://github.com/magit/magit/issues/2758 ff.

Instead of, or in addition to, using delimiting horizontal lines,
to emphasize the boundaries, you may which to emphasize the text
itself, using magit-diff-highlight-hunk-region-using-face.

In terminal frames it’s not possible to draw lines as the overlay
and underline variants normally do, so there they fall back to
calling the face function instead.

User Option: magit-diff-unmarked-lines-keep-foreground
This option controls whether added and removed lines outside the
hunk-internal region only lose their distinct background color or
also the foreground color. Whether the outside of the region is
dimmed at all depends on magit-diff-highlight-hunk-region-functions.

User Option: magit-diff-extra-stat-arguments
This option specifies additional arguments to be used alongside
--stat.

The value is a list of zero or more arguments or a function that
takes no argument and returns such a list. These arguments are
allowed here: --stat-width, --stat-name-width,
--stat-graph-width and --compact-summary. Also see

Revision Buffer

User Option: magit-revision-insert-related-refs
Whether to show related branches in revision buffers.

	nil Don’t show any related branches.

	t Show related local branches.

	all Show related local and remote branches.

	mixed Show all containing branches and local merged branches.

User Option: magit-revision-show-gravatars
Whether to show gravatar images in revision buffers.

If nil, then don’t insert any gravatar images. If t, then insert
both images. If author or committer, then insert only the
respective image.

If you have customized the option magit-revision-headers-format
and want to insert the images then you might also have to specify
where to do so. In that case the value has to be a cons-cell of
two regular expressions. The car specifies where to insert the
author’s image. The top half of the image is inserted right
after the matched text, the bottom half on the next line in the
same column. The cdr specifies where to insert the committer’s
image, accordingly. Either the car or the cdr may be nil."

User Option: magit-revision-use-hash-sections
Whether to turn hashes inside the commit message into sections.

If non-nil, then hashes inside the commit message are turned into
commit sections. There is a trade off to be made between
performance and reliability:

	slow calls git for every word to be absolutely sure.

	quick skips words less than seven characters long.

	quicker additionally skips words that don’t contain a number.

	quickest uses all words that are at least seven characters long
and which contain at least one number as well as at least one
letter.

If nil, then no hashes are turned into sections, but you can still
visit the commit at point using "RET".

The diffs shown in the revision buffer may be automatically restricted
to a subset of the changed files. If the revision buffer is displayed
from a log buffer, the revision buffer will share the same file
restriction as that log buffer (also see the command
magit-diff-toggle-file-filter).

User Option: magit-revision-filter-files-on-follow
Whether showing a commit from a log buffer honors the log’s file
filter when the log arguments include --follow.

When this option is nil, displaying a commit from a log ignores the
log’s file filter if the log arguments include --follow. Doing so
avoids showing an empty diff in revision buffers for commits before
a rename event. In such cases, the --patch argument of the log
transient can be used to show the file-restricted diffs inline.

Set this option to non-nil to keep the log’s file restriction even
if --follow is present in the log arguments.

If the revision buffer is not displayed from a log buffer, the file
restriction is determined as usual (see Transient Arguments and Buffer Variables).

Ediffing

This section describes how to enter Ediff from Magit buffers. For
information on how to use Ediff itself, see .

	e (magit-ediff-dwim)

	Compare, stage, or resolve using Ediff.

This command tries to guess what file, and what commit or range the
user wants to compare, stage, or resolve using Ediff. It might only
be able to guess either the file, or range/commit, in which case
the user is asked about the other. It might not always guess right,
in which case the appropriate magit-ediff-* command has to be used
explicitly. If it cannot read the user’s mind at all, then it asks
the user for a command to run.

	E (magit-ediff)

	This transient prefix command binds the following suffix commands
and displays them in a temporary buffer until a suffix is invoked.

	E r (magit-ediff-compare)

	Compare two revisions of a file using Ediff.

If the region is active, use the revisions on the first and last
line of the region. With a prefix argument, instead of diffing the
revisions, choose a revision to view changes along, starting at the
common ancestor of both revisions (i.e., use a "…" range).

	E m (magit-ediff-resolve)

	Resolve outstanding conflicts in a file using Ediff, defaulting to
the file at point.

Provided that the value of merge.conflictstyle is diff3, you can
view the file’s merge-base revision using / in the Ediff control
buffer.

In the rare event that you want to manually resolve all conflicts,
including those already resolved by Git, use
ediff-merge-revisions-with-ancestor.

	E s (magit-ediff-stage)

	Stage and unstage changes to a file using Ediff, defaulting to the
file at point.

	E u (magit-ediff-show-unstaged)

	Show unstaged changes to a file using Ediff.

	E i (magit-ediff-show-staged)

	Show staged changes to a file using Ediff.

	E w (magit-ediff-show-working-tree)

	Show changes in a file between HEAD and working tree using Ediff.

	E c (magit-ediff-show-commit)

	Show changes to a file introduced by a commit using Ediff.

	E z (magit-ediff-show-stash)

	Show changes to a file introduced by a stash using Ediff.

User Option: magit-ediff-dwim-show-on-hunks
This option controls what command magit-ediff-dwim calls when
point is on uncommitted hunks. When nil, always run
magit-ediff-stage. Otherwise, use magit-ediff-show-staged and
magit-ediff-show-unstaged to show staged and unstaged changes,
respectively.

User Option: magit-ediff-show-stash-with-index
This option controls whether magit-ediff-show-stash includes a
buffer containing the file’s state in the index at the time the
stash was created. This makes it possible to tell which changes in
the stash were staged.

User Option: magit-ediff-quit-hook
This hook is run after quitting an Ediff session that was created
using a Magit command. The hook functions are run inside the Ediff
control buffer, and should not change the current buffer.

This is similar to ediff-quit-hook but takes the needs of Magit into
account. The regular ediff-quit-hook is ignored by Ediff sessions
that were created using a Magit command.

References Buffer

	y (magit-show-refs)

	This command lists branches and tags in a dedicated buffer.

However if this command is invoked again from this buffer or if it
is invoked with a prefix argument, then it acts as a transient
prefix command, which binds the following suffix commands and some
infix arguments.

All of the following suffix commands list exactly the same branches
and tags. The only difference the optional feature that can be
enabled by changing the value of magit-refs-show-commit-count (see
below). These commands specify a different branch or commit against
which all the other references are compared.

	y y (magit-show-refs-head)

	This command lists branches and tags in a dedicated buffer. Each
reference is being compared with HEAD.

	y c (magit-show-refs-current)

	This command lists branches and tags in a dedicated buffer. Each
reference is being compared with the current branch or HEAD if it
is detached.

	y o (magit-show-refs-other)

	This command lists branches and tags in a dedicated buffer. Each
reference is being compared with a branch read from the user.

	y r (magit-refs-set-show-commit-count)

	This command changes for which refs the commit count is shown.

User Option: magit-refs-show-commit-count
Whether to show commit counts in Magit-Refs mode buffers.

	all Show counts for branches and tags.

	branch Show counts for branches only.

	nil Never show counts.

The default is nil because anything else can be very expensive.

User Option: magit-refs-pad-commit-counts
Whether to pad all commit counts on all sides in Magit-Refs mode
buffers.

If this is nil, then some commit counts are displayed right next to
one of the branches that appear next to the count, without any space
in between. This might look bad if the branch name faces look too
similar to magit-dimmed.

If this is non-nil, then spaces are placed on both sides of all
commit counts.

User Option: magit-refs-show-remote-prefix
Whether to show the remote prefix in lists of remote branches.

Showing the prefix is redundant because the name of the remote is
already shown in the heading preceding the list of its branches.

User Option: magit-refs-primary-column-width
Width of the primary column in ‘magit-refs-mode’ buffers. The
primary column is the column that contains the name of the branch
that the current row is about.

If this is an integer, then the column is that many columns wide.
Otherwise it has to be a cons-cell of two integers. The first
specifies the minimal width, the second the maximal width. In that
case the actual width is determined using the length of the names of
the shown local branches. (Remote branches and tags are not taken
into account when calculating to optimal width.)

User Option: magit-refs-focus-column-width
Width of the focus column in ‘magit-refs-mode’ buffers.

The focus column is the first column, which marks one branch
(usually the current branch) as the focused branch using * or @.
For each other reference, this column optionally shows how many
commits it is ahead of the focused branch and <, or if it isn’t
ahead then the commits it is behind and >, or if it isn’t behind
either, then a =.

This column may also display only * or @ for the focused branch, in
which case this option is ignored. Use L v to change the verbosity
of this column.

User Option: magit-refs-margin
This option specifies whether the margin is initially shown in
Magit-Refs mode buffers and how it is formatted.

The value has the form (INIT STYLE WIDTH AUTHOR AUTHOR-WIDTH).

	If INIT is non-nil, then the margin is shown initially.

	STYLE controls how to format the author or committer date. It can
be one of age (to show the age of the commit), age-abbreviated (to
abbreviate the time unit to a character), or a string (suitable
for format-time-string) to show the actual date. Option
magit-log-margin-show-committer-date controls which date is being
displayed.

	WIDTH controls the width of the margin. This exists for forward
compatibility and currently the value should not be changed.

	AUTHOR controls whether the name of the author is also shown by
default.

	AUTHOR-WIDTH has to be an integer. When the name of the author
is shown, then this specifies how much space is used to do so.

User Option: magit-refs-margin-for-tags
This option specifies whether to show information about tags in the
margin. This is disabled by default because it is slow if there are
many tags.

The following variables control how individual refs are displayed. If
you change one of these variables (especially the "%c" part), then you
should also change the others to keep things aligned. The following
%-sequences are supported:

	%a Number of commits this ref has over the one we compare to.

	%b Number of commits the ref we compare to has over this one.

	%c Number of commits this ref has over the one we compare to. For
the ref which all other refs are compared this is instead "@", if
it is the current branch, or "#" otherwise.

	%C For the ref which all other refs are compared this is "@", if it
is the current branch, or "#" otherwise. For all other refs " ".

	%h Hash of this ref’s tip.

	%m Commit summary of the tip of this ref.

	%n Name of this ref.

	%u Upstream of this local branch.

	%U Upstream of this local branch and additional local vs. upstream
information.

User Option: magit-refs-filter-alist
The purpose of this option is to forgo displaying certain refs
based on their name. If you want to not display any refs of a
certain type, then you should remove the appropriate function
from magit-refs-sections-hook instead.

This alist controls which tags and branches are omitted from being
displayed in magit-refs-mode buffers. If it is nil, then all refs
are displayed (subject to magit-refs-sections-hook).

All keys are tried in order until one matches. Then its value is
used and subsequent elements are ignored. If the value is non-nil,
then the reference is displayed, otherwise it is not. If no element
matches, then the reference is displayed.

A key can either be a regular expression that the refname has to
match, or a function that takes the refname as only argument and
returns a boolean. A remote branch such as "origin/master" is
displayed as just "master", however for this comparison the
former is used.

	RET (magit-visit-ref)

	This command visits the reference or revision at point in another
buffer. If there is no revision at point or with a prefix argument
then it prompts for a revision.

This command behaves just like magit-show-commit as described above,
except if point is on a reference in a magit-refs-mode buffer, in
which case the behavior may be different, but only if you have
customized the option magit-visit-ref-behavior.

User Option: magit-visit-ref-behavior
This option controls how magit-visit-ref behaves in magit-refs-mode
buffers.

By default magit-visit-ref behaves like magit-show-commit, in all
buffers, including magit-refs-mode buffers. When the type of the
section at point is commit then "RET" is bound to magit-show-commit,
and when the type is either branch or tag then it is bound to
magit-visit-ref.

"RET" is one of Magit’s most essential keys and at least by default
it should behave consistently across all of Magit, especially
because users quickly learn that it does something very harmless; it
shows more information about the thing at point in another buffer.

However "RET" used to behave differently in magit-refs-mode buffers,
doing surprising things, some of which cannot really be described as
"visit this thing". If you’ve grown accustomed this behavior, you
can restore it by adding one or more of the below symbols to the
value of this option. But keep in mind that by doing so you don’t
only introduce inconsistencies, you also lose some functionality and
might have to resort to M-x magit-show-commit to get it back.

magit-visit-ref looks for these symbols in the order in which they
are described here. If the presence of a symbol applies to the
current situation, then the symbols that follow do not affect the
outcome.

	focus-on-ref

With a prefix argument update the buffer to show commit counts
and lists of cherry commits relative to the reference at point
instead of relative to the current buffer or HEAD.

Instead of adding this symbol, consider pressing "C-u y o RET".

	create-branch

If point is on a remote branch, then create a new local branch
with the same name, use the remote branch as its upstream, and
then check out the local branch.

Instead of adding this symbol, consider pressing "b c RET RET",
like you would do in other buffers.

	checkout-any

Check out the reference at point. If that reference is a tag
or a remote branch, then this results in a detached HEAD.

Instead of adding this symbol, consider pressing "b b RET",
like you would do in other buffers.

	checkout-branch

Check out the local branch at point.

Instead of adding this symbol, consider pressing "b b RET",
like you would do in other buffers.

References Sections

The contents of references buffers is controlled using the hook
magit-refs-sections-hook. See Section Hooks to learn about such hooks
and how to customize them. All of the below functions are members of
the default value. Note that it makes much less sense to customize
this hook than it does for the respective hook used for the status
buffer.

User Option: magit-refs-sections-hook
Hook run to insert sections into a references buffer.

Function: magit-insert-local-branches
Insert sections showing all local branches.

Function: magit-insert-remote-branches
Insert sections showing all remote-tracking branches.

Function: magit-insert-tags
Insert sections showing all tags.

Bisecting

Also see

	B (magit-bisect)

	This transient prefix command binds the following suffix commands
and displays them in a temporary buffer until a suffix is invoked.

When bisecting is not in progress, then the transient features the
following suffix commands.

	B B (magit-bisect-start)

	Start a bisect session.

Bisecting a bug means to find the commit that introduced it.
This command starts such a bisect session by asking for a known
good commit and a known bad commit. If you’re bisecting a change
that isn’t a regression, you can select alternate terms that are
conceptually more fitting than "bad" and "good", but the infix
arguments to do so are disabled by default.

	B s (magit-bisect-run)

	Bisect automatically by running commands after each step.

When bisecting in progress, then the transient instead features the
following suffix commands.

	B b (magit-bisect-bad)

	Mark the current commit as bad. Use this after you have asserted
that the commit does contain the bug in question.

	B g (magit-bisect-good)

	Mark the current commit as good. Use this after you have asserted
that the commit does not contain the bug in question.

	B m (magit-bisect-mark)

	Mark the current commit with one of the bisect terms. This command
provides an alternative to magit-bisect-bad and
magit-bisect-good and is useful when using terms other than "bad"
and "good". This suffix is disabled by default.

	B k (magit-bisect-skip)

	Skip the current commit. Use this if for some reason the current
commit is not a good one to test. This command lets Git choose a
different one.

	B r (magit-bisect-reset)

	After bisecting, cleanup bisection state and return to original
HEAD.

By default the status buffer shows information about the ongoing
bisect session.

User Option: magit-bisect-show-graph
This option controls whether a graph is displayed for the log of
commits that still have to be bisected.

Visiting Files and Blobs

Magit provides several commands that visit a file or blob (the version
of a file that is stored in a certain commit). Actually it provides
several groups of such commands and the several variants within each
group.

General-Purpose Visit Commands

These commands can be used anywhere to open any blob. Currently no
keys are bound to these commands by default, but that is likely to
change.

Command: magit-find-file
This command reads a filename and revision from the user and visits
the respective blob in a buffer. The buffer is displayed in the
selected window.

Command: magit-find-file-other-window
This command reads a filename and revision from the user and visits
the respective blob in a buffer. The buffer is displayed in another
window.

Command: magit-find-file-other-frame
This command reads a filename and revision from the user and visits
the respective blob in a buffer. The buffer is displayed in another
frame.

Visiting Files and Blobs from a Diff

These commands can only be used when point is inside a diff.

	RET (magit-diff-visit-file)

	This command visits the appropriate version of the file that the
diff at point is about.

This commands visits the worktree version of the appropriate file.
The location of point inside the diff determines which file is being
visited. The visited version depends on what changes the diff is
about.

	If the diff shows uncommitted changes (i.e. staged or unstaged
changes), then visit the file in the working tree (i.e. the
same "real" file that find-file would visit. In all other
cases visit a "blob" (i.e. the version of a file as stored
in some commit).

	If point is on a removed line, then visit the blob for the
first parent of the commit that removed that line, i.e. the
last commit where that line still exists.

	If point is on an added or context line, then visit the blob
that adds that line, or if the diff shows from more than a
single commit, then visit the blob from the last of these
commits.

In the file-visiting buffer this command goes to the line that
corresponds to the line that point is on in the diff.

The buffer is displayed in the selected window. With a prefix
argument the buffer is displayed in another window instead.

User Option: magit-diff-visit-previous-blob
This option controls whether magit-diff-visit-file may visit the
previous blob. When this is t (the default) and point is on a
removed line in a diff for a committed change, then
magit-diff-visit-file visits the blob from the last revision which
still had that line.

Currently this is only supported for committed changes, for staged
and unstaged changes magit-diff-visit-file always visits the file in
the working tree.

	C-<return> (magit-diff-visit-file-worktree)

	This command visits the worktree version of the appropriate file.
The location of point inside the diff determines which file is being
visited. Unlike magit-diff-visit-file it always visits the "real"
file in the working tree, i.e the "current version" of the file.

In the file-visiting buffer this command goes to the line that
corresponds to the line that point is on in the diff. Lines that
were added or removed in the working tree, the index and other
commits in between are automatically accounted for.

The buffer is displayed in the selected window. With a prefix
argument the buffer is displayed in another window instead.

Variants of the above two commands exist that instead visit the file
in another window or in another frame. If you prefer such behavior,
then you may want to change the above key bindings, but note that the
above commands also use another window when invoked with a prefix
argument.

Command: magit-diff-visit-file-other-window
Command: magit-diff-visit-file-other-frame
Command: magit-diff-visit-worktree-file-other-window
Command: magit-diff-visit-worktree-file-other-frame

Blaming

Also see

To start blaming invoke the magit-file-dispatch transient prefix
command by pressing C-c M-g.

The blaming suffix commands can be invoked from the dispatch
transient. However if you want to set an infix argument, then you
have to enter the blaming sub-transient first.

The key bindings shown below assume that you enter the dispatch
transient using the default binding.

	C-c M-g B (magit-blame)

	This transient prefix command binds the following suffix commands
along with the appropriate infix arguments and displays them in a
temporary buffer until a suffix is invoked.

Note that not all of the following suffixes are available at all
times. For example if magit-blame-mode is not enabled, then the
command whose purpose is to turn off that mode would not be of any
use and therefore isn’t available.

	C-c M-g b (magit-blame-addition)

	
	C-c M-g B b

	This command augments each line or chunk of lines in the current
file-visiting or blob-visiting buffer with information about what
commits last touched these lines.

If the buffer visits a revision of that file, then history up to
that revision is considered. Otherwise, the file’s full history is
considered, including uncommitted changes.

If Magit-Blame mode is already turned on in the current buffer then
blaming is done recursively, by visiting REVISION:FILE (using
magit-find-file), where REVISION is a parent of the revision that
added the current line or chunk of lines.

	C-c M-g r (magit-blame-removal)

	
	C-c M-g B r

	This command augments each line or chunk of lines in the current
blob-visiting buffer with information about the revision that
removes it. It cannot be used in file-visiting buffers.

Like magit-blame-addition, this command can be used recursively.

	C-c M-g f (magit-blame-reverse)

	
	C-c M-g B f

	This command augments each line or chunk of lines in the current
file-visiting or blob-visiting buffer with information about the
last revision in which a line still existed.

Like magit-blame-addition, this command can be used recursively.

	C-c M-g e (magit-blame-echo)

	
	C-c M-g B e

	This command is like magit-blame-addition except that it doesn’t
turn on read-only-mode and that it initially uses the visualization
style specified by option magit-blame-echo-style.

The following key bindings are available when Magit-Blame mode is
enabled and Read-Only mode is not enabled. These commands are also
available in other buffers; here only the behavior is described that
is relevant in file-visiting buffers that are being blamed.

	RET (magit-show-commit)

	This command shows the commit that last touched the line at point.

	SPC (magit-diff-show-or-scroll-up)

	This command updates the commit buffer.

This either shows the commit that last touched the line at point in
the appropriate buffer, or if that buffer is already being displayed
in the current frame and if that buffer contains information about
that commit, then the buffer is scrolled up instead.

	DEL (magit-diff-show-or-scroll-down)

	This command updates the commit buffer.

This either shows the commit that last touched the line at point in
the appropriate buffer, or if that buffer is already being displayed
in the current frame and if that buffer contains information about
that commit, then the buffer is scrolled down instead.

The following key bindings are available when both Magit-Blame mode
and Read-Only mode are enabled.

	b (magit-blame)

	See above.

	n (magit-blame-next-chunk)

	This command moves to the next chunk.

	N (magit-blame-next-chunk-same-commit)

	This command moves to the next chunk from the same commit.

	p (magit-blame-previous-chunk)

	This command moves to the previous chunk.

	P (magit-blame-previous-chunk-same-commit)

	This command moves to the previous chunk from the same commit.

	q (magit-blame-quit)

	This command turns off Magit-Blame mode. If the buffer was created
during a recursive blame, then it also kills the buffer.

	M-w (magit-blame-copy-hash)

	This command saves the hash of the current chunk’s commit to the
kill ring.

When the region is active, the command saves the region’s content
instead of the hash, like kill-ring-save would.

	c (magit-blame-cycle-style)

	This command changes how blame information is visualized in the
current buffer by cycling through the styles specified using the
option magit-blame-styles.

Blaming is also controlled using the following options.

User Option: magit-blame-styles
This option defines a list of styles used to visualize blame
information. For now see its doc-string to learn more.

User Option: magit-blame-echo-style
This option specifies the blame visualization style used by the
command magit-blame-echo. This must be a symbol that is used as the
identifier for one of the styles defined in magit-blame-styles.

User Option: magit-blame-time-format
This option specifies the format string used to display times when
showing blame information.

User Option: magit-blame-read-only
This option controls whether blaming a buffer also makes temporarily
read-only.

User Option: magit-blame-disable-modes
This option lists incompatible minor-modes that should be disabled
temporarily when a buffer contains blame information. They are
enabled again when the buffer no longer shows blame information.

User Option: magit-blame-goto-chunk-hook
This hook is run when moving between chunks.

Chapter 6. Manipulating

Creating Repository

	I (magit-init)

	This command initializes a repository and then shows the status
buffer for the new repository.

If the directory is below an existing repository, then the user has
to confirm that a new one should be created inside. If the
directory is the root of the existing repository, then the user has
to confirm that it should be reinitialized.

Cloning Repository

To clone a remote or local repository use C, which is bound to the
command magit-clone. This command either act as a transient prefix
command, which binds several infix arguments and suffix commands, or
it can invoke git clone directly, depending on whether a prefix
argument is used and on the value of magit-clone-always-transient.

User Option: magit-clone-always-transient
This option controls whether the command magit-clone always acts as
a transient prefix command, regardless of whether a prefix argument
is used or not. If t, then that command always acts as a transient
prefix. If nil, then a prefix argument has to be used for it to act
as a transient.

	C (magit-clone)

	This command either acts as a transient prefix command as described
above or does the same thing as transient-clone-regular as described
below.

If it acts as a transient prefix, then it binds the following suffix
commands and several infix arguments.

	C C (magit-clone-regular)

	This command creates a regular clone of an existing repository.
The repository and the target directory are read from the user.

	C s (magit-clone-shallow)

	This command creates a shallow clone of an existing repository.
The repository and the target directory are read from the user.
By default the depth of the cloned history is a single commit,
but with a prefix argument the depth is read from the user.

	C b (magit-clone-bare)

	This command creates a bare clone of an existing repository.
The repository and the target directory are read from the user.

	C m (magit-clone-mirror)

	This command creates a mirror of an existing repository.
The repository and the target directory are read from the user.

The following suffixes are disabled by default. See
 for how to enable them.

	C d (magit-clone-shallow-since)

	This command creates a shallow clone of an existing repository.
Only commits that were committed after a date are cloned, which
is read from the user. The repository and the target directory
are also read from the user.

	C e (magit-clone-shallow-exclude)

	This command creates a shallow clone of an existing repository.
This reads a branch or tag from the user. Commits that are
reachable from that are not cloned. The repository and the target
directory are also read from the user.

User Option: magit-clone-set-remote-head
This option controls whether cloning causes the reference
refs/remotes/<remote>/HEAD to be created in the clone. The default
is to delete the reference after running git clone, which insists on
creating it. This is because the reference has not been found to be
particularly useful as it is not automatically updated when the HEAD
of the remote changes. Setting this option to t preserves Git’s
default behavior of creating the reference.

User Option: magit-clone-set-remote.pushDefault
This option controls whether the value of the Git variable
remote.pushDefault is set after cloning.

	If t, then it is always set without asking.

	If ask, then the users are asked every time they clone a
repository.

	If nil, then it is never set.

User Option: magit-clone-default-directory
This option control the default directory name used when reading the
destination for a cloning operation.

	If nil (the default), then the value of default-directory is used.

	If a directory, then that is used.

	If a function, then that is called with the remote url as the only
argument and the returned value is used.

User Option: magit-clone-name-alist
This option maps regular expressions, which match repository names,
to repository urls, making it possible for users to enter short
names instead of urls when cloning repositories.

Each element has the form (REGEXP HOSTNAME USER). When the user
enters a name when a cloning command asks for a name or url, then
that is looked up in this list. The first element whose REGEXP
matches is used.

The format specified by option magit-clone-url-format is used to
turn the name into an url, using HOSTNAME and the repository name.
If the provided name contains a slash, then that is used. Otherwise
if the name omits the owner of the repository, then the default user
specified in the matched entry is used.

If USER contains a dot, then it is treated as a Git variable and the
value of that is used as the username. Otherwise it is used as the
username itself.

User Option: magit-clone-url-format
The format specified by this option is used when turning repository
names into urls. %h is the hostname and %n is the repository name,
including the name of the owner.

Staging and Unstaging

Like Git, Magit can of course stage and unstage complete files.
Unlike Git, it also allows users to gracefully un-/stage
individual hunks and even just part of a hunk. To stage individual
hunks and parts of hunks using Git directly, one has to use the very
modal and rather clumsy interface of a git add --interactive session.

With Magit, on the other hand, one can un-/stage individual hunks by
just moving point into the respective section inside a diff displayed
in the status buffer or a separate diff buffer and typing s or u. To
operate on just parts of a hunk, mark the changes that should be
un-/staged using the region and then press the same key that would be
used to un-/stage. To stage multiple files or hunks at once use a
region that starts inside the heading of such a section and ends
inside the heading of a sibling section of the same type.

Besides staging and unstaging, Magit also provides several other
"apply variants" that can also operate on a file, multiple files at
once, a hunk, multiple hunks at once, and on parts of a hunk. These
apply variants are described in the next section.

You can also use Ediff to stage and unstage. See Ediffing.

	s (magit-stage)

	Add the change at point to the staging area.

With a prefix argument and an untracked file (or files) at point,
stage the file but not its content. This makes it possible to stage
only a subset of the new file’s changes.

	S (magit-stage-modified)

	Stage all changes to files modified in the worktree. Stage all new
content of tracked files and remove tracked files that no longer
exist in the working tree from the index also. With a prefix
argument also stage previously untracked (but not ignored) files.

	u (magit-unstage)

	Remove the change at point from the staging area.

Only staged changes can be unstaged. But by default this command
performs an action that is somewhat similar to unstaging, when it is
called on a committed change: it reverses the change in the index
but not in the working tree.

	U (magit-unstage-all)

	Remove all changes from the staging area.

User Option: magit-unstage-committed
This option controls whether magit-unstage "unstages" committed
changes by reversing them in the index but not the working tree.
The alternative is to raise an error.

	M-x magit-reverse-in-index

	This command reverses the committed change at point in the index but
not the working tree. By default no key is bound directly to this
command, but it is indirectly called when u (magit-unstage) is
pressed on a committed change.

This allows extracting a change from HEAD, while leaving it in the
working tree, so that it can later be committed using a separate
commit. A typical workflow would be:

	Optionally make sure that there are no uncommitted changes.

	Visit the HEAD commit and navigate to the change that should
not have been included in that commit.

	Type u (magit-unstage) to reverse it in the index.
This assumes that magit-unstage-committed-changes is non-nil.

	Type c e to extend HEAD with the staged changes,
including those that were already staged before.

	Optionally stage the remaining changes using s or S and then
type c c to create a new commit.

	M-x magit-reset-index

	Reset the index to some commit. The commit is read from the user
and defaults to the commit at point. If there is no commit at
point, then it defaults to HEAD.

Staging from File-Visiting Buffers

Fine-grained un-/staging has to be done from the status or a diff
buffer, but it’s also possible to un-/stage all changes made to the
file visited in the current buffer right from inside that buffer.

	M-x magit-stage-file

	When invoked inside a file-visiting buffer, then stage all changes
to that file. In a Magit buffer, stage the file at point if any.
Otherwise prompt for a file to be staged. With a prefix argument
always prompt the user for a file, even in a file-visiting buffer or
when there is a file section at point.

	M-x magit-unstage-file

	When invoked inside a file-visiting buffer, then unstage all changes
to that file. In a Magit buffer, unstage the file at point if any.
Otherwise prompt for a file to be unstaged. With a prefix argument
always prompt the user for a file, even in a file-visiting buffer or
when there is a file section at point.

Applying

Magit provides several "apply variants": stage, unstage, discard,
reverse, and "regular apply". At least when operating on a hunk they
are all implemented using git apply, which is why they are called
"apply variants".

	Stage. Apply a change from the working tree to the index. The change
also remains in the working tree.

	Unstage. Remove a change from the index. The change remains in the
working tree.

	Discard. On a staged change, remove it from the working tree and the
index. On an unstaged change, remove it from the working tree only.

	Reverse. Reverse a change in the working tree. Both committed and
staged changes can be reversed. Unstaged changes cannot be
reversed. Discard them instead.

	Apply. Apply a change to the working tree. Both committed and staged
changes can be applied. Unstaged changes cannot be applied - as
they already have been applied.

The previous section described the staging and unstaging commands.
What follows are the commands which implement the remaining apply
variants.

	a (magit-apply)

	Apply the change at point to the working tree.

With a prefix argument fallback to a 3-way merge. Doing so causes
the change to be applied to the index as well.

	k (magit-discard)

	Remove the change at point from the working tree.

On a hunk or file with unresolved conflicts prompt which side to
keep (while discarding the other). If point is within the text
of a side, then keep that side without prompting.

	v (magit-reverse)

	Reverse the change at point in the working tree.

With a prefix argument fallback to a 3-way merge. Doing so causes
the change to be applied to the index as well.

With a prefix argument all apply variants attempt a 3-way merge when
appropriate (i.e. when git apply is used internally).

Committing

When the user initiates a commit, Magit calls git commit without any
arguments, so Git has to get it from the user. It creates the file
.git/COMMIT_EDITMSG and then opens that file in an editor. Magit
arranges for that editor to be the Emacsclient. Once the user
finishes the editing session, the Emacsclient exits and Git creates the
commit using the file’s content as message.

Initiating a Commit

Also see

	c (magit-commit)

	This transient prefix command binds the following suffix commands
along with the appropriate infix arguments and displays them in a
temporary buffer until a suffix is invoked.

	c c (magit-commit-create)

	Create a new commit on HEAD. With a prefix argument amend to the
commit at HEAD instead.

	c a (magit-commit-amend)

	Amend the last commit.

	c e (magit-commit-extend)

	Amend the last commit, without editing the message. With a prefix
argument keep the committer date, otherwise change it. The option
magit-commit-extend-override-date can be used to inverse the meaning
of the prefix argument.

Non-interactively respect the optional OVERRIDE-DATE argument and
ignore the option.

	c w (magit-commit-reword)

	Reword the last commit, ignoring staged changes. With a prefix
argument keep the committer date, otherwise change it. The option
magit-commit-reword-override-date can be used to inverse the meaning
of the prefix argument.

Non-interactively respect the optional OVERRIDE-DATE argument and
ignore the option.

	c f (magit-commit-fixup)

	Create a fixup commit.

With a prefix argument the target commit has to be confirmed.
Otherwise the commit at point may be used without confirmation
depending on the value of option magit-commit-squash-confirm.

	c F (magit-commit-instant-fixup)

	Create a fixup commit and instantly rebase.

	c s (magit-commit-squash)

	Create a squash commit, without editing the squash message.

With a prefix argument the target commit has to be confirmed.
Otherwise the commit at point may be used without confirmation
depending on the value of option magit-commit-squash-confirm.

	c S (magit-commit-instant-squash)

	Create a squash commit and instantly rebase.

	c A (magit-commit-augment)

	Create a squash commit, editing the squash message.

With a prefix argument the target commit has to be confirmed.
Otherwise the commit at point may be used without confirmation
depending on the value of option magit-commit-squash-confirm.

User Option: magit-commit-ask-to-stage
Whether to ask to stage all unstaged changes when committing and nothing is
staged.

User Option: magit-commit-show-diff
Whether the relevant diff is automatically shown when committing.

User Option: magit-commit-extend-override-date
Whether using magit-commit-extend changes the committer date.

User Option: magit-commit-reword-override-date
Whether using magit-commit-reword changes the committer date.

User Option: magit-commit-squash-confirm
Whether the commit targeted by squash and fixup has to be confirmed.
When non-nil then the commit at point (if any) is used as default
choice. Otherwise it has to be confirmed. This option only affects
magit-commit-squash and magit-commit-fixup. The "instant" variants
always require confirmation because making an error while using
those is harder to recover from.

User Option: magit-post-commit-hook
Hook run after creating a commit without the user editing a message.

This hook is run by magit-refresh if this-command is a member
of magit-post-stage-hook-commands. This only includes commands
named magit-commit-* that do not require that the user edits
the commit message in a buffer.

Also see git-commit-post-finish-hook.

User Option: magit-commit-diff-inhibit-same-window
Whether to inhibit use of same window when showing diff while
committing.

When writing a commit, then a diff of the changes to be committed
is automatically shown. The idea is that the diff is shown in a
different window of the same frame and for most users that just
works. In other words most users can completely ignore this
option because its value doesn’t make a difference for them.

However for users who configured Emacs to never create a new
window even when the package explicitly tries to do so, then
displaying two new buffers necessarily means that the first is
immediately replaced by the second. In our case the message
buffer is immediately replaced by the diff buffer, which is of
course highly undesirable.

A workaround is to suppress this user configuration in this
particular case. Users have to explicitly opt-in by toggling
this option. We cannot enable the workaround unconditionally
because that again causes issues for other users: if the frame
is too tiny or the relevant settings too aggressive, then the
diff buffer would end up being displayed in a new frame.

Also see https://github.com/magit/magit/issues/4132.

Editing Commit Messages

After initiating a commit as described in the previous section, two new
buffers appear. One shows the changes that are about to be committed,
while the other is used to write the message.

Commit messages are edited in an edit session - in the background git
is waiting for the editor, in our case emacsclient, to save the commit
message in a file (in most cases .git/COMMIT_EDITMSG) and then return.
If the editor returns with a non-zero exit status then git does not
create the commit. So the most important commands are those for
finishing and aborting the commit.

	C-c C-c (with-editor-finish)

	Finish the current editing session by returning with exit code 0.
Git then creates the commit using the message it finds in the file.

	C-c C-k (with-editor-cancel)

	Cancel the current editing session by returning with exit code 1.
Git then cancels the commit, but leaves the file untouched.

In addition to being used by git commit, messages may also be stored
in a ring that persists until Emacs is closed. By default the message
is stored at the beginning and the end of an edit session (regardless
of whether the session is finished successfully or was canceled). It
is sometimes useful to bring back messages from that ring.

	C-c M-s (git-commit-save-message)

	Save the current buffer content to the commit message ring.

	M-p (git-commit-prev-message)

	Cycle backward through the commit message ring, after saving the
current message to the ring. With a numeric prefix ARG, go back
ARG comments.

	M-n (git-commit-next-message)

	Cycle forward through the commit message ring, after saving the
current message to the ring. With a numeric prefix ARG, go back
ARG comments.

By default the diff for the changes that are about to be committed are
automatically shown when invoking the commit. To prevent that, remove
magit-commit-diff from server-switch-hook.

When amending to an existing commit it may be useful to show either
the changes that are about to be added to that commit or to show those
changes alongside those that have already been committed.

	C-c C-d (magit-diff-while-committing)

	While committing, show the changes that are about to be committed.
While amending, invoking the command again toggles between showing
just the new changes or all the changes that will be committed.

Using the Revision Stack

	C-c C-w (magit-pop-revision-stack)

	This command inserts a representation of a revision into the current
buffer. It can be used inside buffers used to write commit messages
but also in other buffers such as buffers used to edit emails or
ChangeLog files.

By default this command pops the revision which was last added to
the magit-revision-stack and inserts it into the current buffer
according to magit-pop-revision-stack-format. Revisions can be put
on the stack using magit-copy-section-value and
magit-copy-buffer-revision.

If the stack is empty or with a prefix argument it instead reads a
revision in the minibuffer. By using the minibuffer history this
allows selecting an item which was popped earlier or to insert an
arbitrary reference or revision without first pushing it onto the
stack.

When reading the revision from the minibuffer, then it might not
be possible to guess the correct repository. When this command
is called inside a repository (e.g. while composing a commit
message), then that repository is used. Otherwise (e.g. while
composing an email) then the repository recorded for the top
element of the stack is used (even though we insert another
revision). If not called inside a repository and with an empty
stack, or with two prefix arguments, then read the repository in
the minibuffer too.

User Option: magit-pop-revision-stack-format
This option controls how the command magit-pop-revision-stack
inserts a revision into the current buffer.

The entries on the stack have the format (HASH TOPLEVEL) and this
option has the format (POINT-FORMAT EOB-FORMAT INDEX-REGEXP), all
of which may be nil or a string (though either one of EOB-FORMAT
or POINT-FORMAT should be a string, and if INDEX-REGEXP is
non-nil, then the two formats should be too).

First INDEX-REGEXP is used to find the previously inserted entry,
by searching backward from point. The first submatch must match
the index number. That number is incremented by one, and becomes
the index number of the entry to be inserted. If you don’t want
to number the inserted revisions, then use nil for INDEX-REGEXP.

If INDEX-REGEXP is non-nil then both POINT-FORMAT and EOB-FORMAT
should contain \"%N\", which is replaced with the number that was
determined in the previous step.

Both formats, if non-nil and after removing %N, are then expanded
using git show --format=FORMAT ... inside TOPLEVEL.

The expansion of POINT-FORMAT is inserted at point, and the
expansion of EOB-FORMAT is inserted at the end of the buffer (if the
buffer ends with a comment, then it is inserted right before that).

Commit Pseudo Headers

Some projects use pseudo headers in commit messages. Magit colorizes
such headers and provides some commands to insert such headers.

User Option: git-commit-known-pseudo-headers
A list of Git pseudo headers to be highlighted.

	C-c C-i (git-commit-insert-pseudo-header)

	Insert a commit message pseudo header.

	C-c C-a (git-commit-ack)

	Insert a header acknowledging that you have looked at the commit.

	C-c C-r (git-commit-review)

	Insert a header acknowledging that you have reviewed the commit.

	C-c C-s (git-commit-signoff)

	Insert a header to sign off the commit.

	C-c C-t (git-commit-test)

	Insert a header acknowledging that you have tested the commit.

	C-c C-o (git-commit-cc)

	Insert a header mentioning someone who might be interested.

	C-c C-p (git-commit-reported)

	Insert a header mentioning the person who reported the issue being
fixed by the commit.

	C-c M-i (git-commit-suggested)

	Insert a header mentioning the person who suggested the change.

Commit Mode and Hooks

git-commit-mode is a minor mode that is only used to establish certain
key bindings. This makes it possible to use an arbitrary major mode
in buffers used to edit commit messages. It is even possible to use
different major modes in different repositories, which is useful when
different projects impose different commit message conventions.

User Option: git-commit-major-mode
The value of this option is the major mode used to edit Git commit
messages.

Because git-commit-mode is a minor mode, we don’t use its mode hook
to setup the buffer, except for the key bindings. All other setup
happens in the function git-commit-setup, which among other things runs
the hook git-commit-setup-hook.

User Option: git-commit-setup-hook
Hook run at the end of git-commit-setup.

The following functions are suitable for this hook:

Function: git-commit-save-message
Save the current buffer content to the commit message ring.

Function: git-commit-setup-changelog-support
After this function is called, ChangeLog entries are treated as
paragraphs.

Function: git-commit-turn-on-auto-fill
Turn on auto-fill-mode and set fill-column to the value of
git-commit-fill-column.

Function: git-commit-turn-on-flyspell
Turn on Flyspell mode. Also prevent comments from being checked and
finally check current non-comment text.

Function: git-commit-propertize-diff
Propertize the diff shown inside the commit message buffer. Git
inserts such diffs into the commit message template when the
--verbose argument is used. magit-commit by default does not offer
that argument because the diff that is shown in a separate buffer is
more useful. But some users disagree, which is why this function
exists.

Function: bug-reference-mode
Hyperlink bug references in the buffer.

Function: with-editor-usage-message
Show usage information in the echo area.

User Option: git-commit-setup-hook
Hook run after the user finished writing a commit message.

This hook is only run after pressing C-c C-c in a buffer used to
edit a commit message. If a commit is created without the user
typing a message into a buffer, then this hook is not run.

This hook is not run until the new commit has been created. If
doing so takes Git longer than one second, then this hook isn’t run
at all. For certain commands such as magit-rebase-continue this
hook is never run because doing so would lead to a race condition.

This hook is only run if magit is available.

Also see magit-post-commit-hook.

Commit Message Conventions

Git-Commit highlights certain violations of commonly accepted commit
message conventions. Certain violations even cause Git-Commit to ask
you to confirm that you really want to do that. This nagging can of
course be turned off, but the result of doing that usually is that
instead of some code it’s now the human who is reviewing your commits
who has to waste some time telling you to fix your commits.

User Option: git-commit-summary-max-length
The intended maximal length of the summary line of commit messages.
Characters beyond this column are colorized to indicate that this
preference has been violated.

User Option: git-commit-fill-column
Column beyond which automatic line-wrapping should happen in commit
message buffers.

User Option: git-commit-finish-query-functions
List of functions called to query before performing commit.

The commit message buffer is current while the functions are called.
If any of them returns nil, then the commit is not performed and the
buffer is not killed. The user should then fix the issue and try
again.

The functions are called with one argument. If it is non-nil then
that indicates that the user used a prefix argument to force
finishing the session despite issues. Functions should usually
honor this wish and return non-nil.

By default the only member is git-commit-check-style-conventions.

Function: git-commit-check-style-conventions
This function checks for violations of certain basic style
conventions. For each violation it asks users if they want to
proceed anyway.

User Option: git-commit-style-convention-checks
This option controls what conventions the function by the same name
tries to enforce. The value is a list of self-explanatory symbols
identifying certain conventions; non-empty-second-line and
overlong-summary-line.

Branching

The Two Remotes

The upstream branch of some local branch is the branch into which the
commits on that local branch should eventually be merged, usually
something like origin/master. For the master branch itself the
upstream branch and the branch it is being pushed to, are usually the
same remote branch. But for a feature branch the upstream branch and
the branch it is being pushed to should differ.

The commits on feature branches too should eventually end up in a
remote branch such as origin/master or origin/maint. Such a branch
should therefore be used as the upstream. But feature branches
shouldn’t be pushed directly to such branches. Instead a feature
branch my-feature is usually pushed to my-fork/my-feature or if you
are a contributor origin/my-feature. After the new feature has been
reviewed, the maintainer merges the feature into master. And finally
master (not my-feature itself) is pushed to origin/master.

But new features seldom are perfect on the first try, and so feature
branches usually have to be reviewed, improved, and re-pushed several
times. Pushing should therefore be easy to do, and for that reason
many Git users have concluded that it is best to use the remote branch
to which the local feature branch is being pushed as its upstream.

But luckily Git has long ago gained support for a push-remote which
can be configured separately from the upstream branch, using the
variables branch.<name>.pushRemote and remote.pushDefault. So we no
longer have to choose which of the two remotes should be used as "the
remote".

Each of the fetching, pulling, and pushing transient commands features
three suffix commands that act on the current branch and some other
branch. Of these, p is bound to a command which acts on the
push-remote, u is bound to a command which acts on the upstream, and e
is bound to a command which acts on any other branch. The status
buffer shows unpushed and unpulled commits for both the push-remote
and the upstream.

It’s fairly simple to configure these two remotes. The values of all
the variables that are related to fetching, pulling, and pushing (as
well as some other branch-related variables) can be inspected and
changed using the command magit-branch-configure, which is available
from many transient prefix commands that deal with branches. It is
also possible to set the push-remote or upstream while pushing (see
Pushing).

Branch Commands

The transient prefix command magit-branch is used to create and
checkout branches, and to make changes to existing branches. It is
not used to fetch, pull, merge, rebase, or push branches, i.e. this
command deals with branches themselves, not with the commits reachable
from them. Those features are available from separate transient
command.

	b (magit-branch)

	This transient prefix command binds the following suffix commands
and displays them in a temporary buffer until a suffix is invoked.

By default it also binds and displays the values of some
branch-related Git variables and allows changing their values.

User Option: magit-branch-direct-configure
This option controls whether the transient command magit-branch can
be used to directly change the values of Git variables. This defaults
to t (to avoid changing key bindings). When set to nil, then no
variables are displayed by that transient command, and its suffix
command magit-branch-configure has to be used instead to view and
change branch related variables.

	b C (magit-branch-configure)
, f C
, F C
, P C

	This transient prefix command binds commands that set the value of
branch-related variables and displays them in a temporary buffer
until the transient is exited.

With a prefix argument, this command always prompts for a branch.

Without a prefix argument this depends on whether it was invoked as
a suffix of magit-branch and on the magit-branch-direct-configure
option. If magit-branch already displays the variables for the
current branch, then it isn’t useful to invoke another transient
that displays them for the same branch. In that case this command
prompts for a branch.

The variables are described in Branch Git Variables.

	b b (magit-checkout)

	Checkout a revision read in the minibuffer and defaulting to the
branch or arbitrary revision at point. If the revision is a local
branch then that becomes the current branch. If it is something
else then HEAD becomes detached. Checkout fails if the working tree
or the staging area contain changes.

	b n (magit-branch-create)

	Create a new branch. The user is asked for a branch or arbitrary
revision to use as the starting point of the new branch. When a
branch name is provided, then that becomes the upstream branch of
the new branch. The name of the new branch is also read in the
minibuffer.

Also see option magit-branch-prefer-remote-upstream.

	b c (magit-branch-and-checkout)

	This command creates a new branch like magit-branch-create, but then
also checks it out.

Also see option magit-branch-prefer-remote-upstream.

	b l (magit-branch-checkout)

	This command checks out an existing or new local branch. It reads a
branch name from the user offering all local branches and a subset
of remote branches as candidates. Remote branches for which a local
branch by the same name exists are omitted from the list of
candidates. The user can also enter a completely new branch name.

	If the user selects an existing local branch, then that is checked
out.

	If the user selects a remote branch, then it creates and checks
out a new local branch with the same name, and configures the
selected remote branch as the push target.

	If the user enters a new branch name, then it creates and checks
that out, after also reading the starting-point from the user.

In the latter two cases the upstream is also set. Whether it is set
to the chosen starting point or something else depends on the value
of magit-branch-adjust-remote-upstream-alist.

	b s (magit-branch-spinoff)

	This command creates and checks out a new branch starting at and
tracking the current branch. That branch in turn is reset to the
last commit it shares with its upstream. If the current branch has
no upstream or no unpushed commits, then the new branch is created
anyway and the previously current branch is not touched.

This is useful to create a feature branch after work has already
began on the old branch (likely but not necessarily "master").

If the current branch is a member of the value of option
magit-branch-prefer-remote-upstream (which see), then the current
branch will be used as the starting point as usual, but the upstream
of the starting-point may be used as the upstream of the new branch,
instead of the starting-point itself.

If optional FROM is non-nil, then the source branch is reset
to FROM~, instead of to the last commit it shares with its
upstream. Interactively, FROM is only ever non-nil, if the
region selects some commits, and among those commits, FROM is
the commit that is the fewest commits ahead of the source
branch.

The commit at the other end of the selection actually does not
matter, all commits between FROM and HEAD are moved to the new
branch. If FROM is not reachable from HEAD or is reachable from the
source branch’s upstream, then an error is raised.

	b S (magit-branch-spinout)

	This command behaves like magit-branch-spinoff, except that it does
not change the current branch. If there are any uncommitted changes,
then it behaves exactly like magit-branch-spinoff.

	b x (magit-branch-reset)

	This command resets a branch, defaulting to the branch at point, to
the tip of another branch or any other commit.

When the branch being reset is the current branch, then a hard reset
is performed. If there are any uncommitted changes, then the user
has to confirm the reset because those changes would be lost.

This is useful when you have started work on a feature branch but
realize it’s all crap and want to start over.

When resetting to another branch and a prefix argument is used, then
the target branch is set as the upstream of the branch that is being
reset.

	b k (magit-branch-delete)

	Delete one or multiple branches. If the region marks multiple
branches, then offer to delete those. Otherwise, prompt for a single
branch to be deleted, defaulting to the branch at point.

	b r (magit-branch-rename)

	Rename a branch. The branch and the new name are read in the
minibuffer. With prefix argument the branch is renamed even if that
name conflicts with an existing branch.

User Option: magit-branch-read-upstream-first
When creating a branch, whether to read the upstream branch before
the name of the branch that is to be created. The default is t,
and I recommend you leave it at that.

User Option: magit-branch-prefer-remote-upstream
This option specifies whether remote upstreams are favored over
local upstreams when creating new branches.

When a new branch is created, then the branch, commit, or stash at
point is suggested as the starting point of the new branch, or if
there is no such revision at point the current branch. In either
case the user may choose another starting point.

If the chosen starting point is a branch, then it may also be set
as the upstream of the new branch, depending on the value of the
Git variable ‘branch.autoSetupMerge’. By default this is done
for remote branches, but not for local branches.

You might prefer to always use some remote branch as upstream.
If the chosen starting point is (1) a local branch, (2) whose
name matches a member of the value of this option, (3) the
upstream of that local branch is a remote branch with the same
name, and (4) that remote branch can be fast-forwarded to the
local branch, then the chosen branch is used as starting point,
but its own upstream is used as the upstream of the new branch.

Members of this option’s value are treated as branch names that
have to match exactly unless they contain a character that makes
them invalid as a branch name. Recommended characters to use
to trigger interpretation as a regexp are "*" and "^". Some
other characters which you might expect to be invalid, actually
are not, e.g. ".+$" are all perfectly valid. More precisely,
if git check-ref-format --branch STRING exits with a non-zero
status, then treat STRING as a regexp.

Assuming the chosen branch matches these conditions you would end
up with with e.g.:

feature --upstream--> origin/master

instead of

feature --upstream--> master --upstream--> origin/master

Which you prefer is a matter of personal preference. If you do
prefer the former, then you should add branches such as master,
next, and maint to the value of this options.

User Option: magit-branch-adjust-remote-upstream-alist
The value of this option is an alist of branches to be used as
the upstream when branching a remote branch.

When creating a local branch from an ephemeral branch located on a
remote, e.g. a feature or hotfix branch, then that remote branch
should usually not be used as the upstream branch, since the
push-remote already allows accessing it and having both the upstream
and the push-remote reference the same related branch would be
wasteful. Instead a branch like "maint" or "master" should be used
as the upstream.

This option allows specifying the branch that should be used as the
upstream when branching certain remote branches. The value is an
alist of the form ((UPSTREAM . RULE)...). The first matching
element is used, the following elements are ignored.

UPSTREAM is the branch to be used as the upstream for branches
specified by RULE. It can be a local or a remote branch.

RULE can either be a regular expression, matching branches whose
upstream should be the one specified by UPSTREAM. Or it can be a
list of the only branches that should not use UPSTREAM; all other
branches will. Matching is done after stripping the remote part of
the name of the branch that is being branched from.

If you use a finite set of non-ephemeral branches across all your
repositories, then you might use something like:

(("origin/master" . ("master" "next" "maint")))

Or if the names of all your ephemeral branches contain a slash,
at least in some repositories, then a good value could be:

(("origin/master" . "/"))

Of course you can also fine-tune:

(("origin/maint" . "\\`hotfix/")
 ("origin/master" . "\\`feature/"))

UPSTREAM can be a local branch:

(("master" . ("master" "next" "maint")))

Because the main branch is no longer almost always named "master"
you should also account for other common names:

(("main" . ("main" "master" "next" "maint"))
 ("master" . ("main" "master" "next" "maint")))

Command: magit-branch-orphan
This command creates and checks out a new orphan branch with
contents from a given revision.

Command: magit-branch-or-checkout
This command is a hybrid between magit-checkout and
magit-branch-and-checkout and is intended as a replacement for the
former in magit-branch.

It first asks the user for an existing branch or revision. If the
user input actually can be resolved as a branch or revision, then it
checks that out, just like magit-checkout would.

Otherwise it creates and checks out a new branch using the input as
its name. Before doing so it reads the starting-point for the new
branch. This is similar to what magit-branch-and-checkout does.

To use this command instead of magit-checkout add this to your init
file:

(transient-replace-suffix 'magit-branch 'magit-checkout
 '("b" "dwim" magit-branch-or-checkout))

Branch Git Variables

These variables can be set from the transient prefix command
magit-branch-configure. By default they can also be set from
magit-branch. See Branch Commands.

Variable: branch.NAME.merge
Together with branch.NAME.remote this variable defines the upstream
branch of the local branch named NAME. The value of this variable
is the full reference of the upstream branch.

Variable: branch.NAME.remote
Together with branch.NAME.merge this variable defines the upstream
branch of the local branch named NAME. The value of this variable
is the name of the upstream remote.

Variable: branch.NAME.rebase
This variable controls whether pulling into the branch named NAME is
done by rebasing or by merging the fetched branch.

	When true then pulling is done by rebasing.

	When false then pulling is done by merging.

	When undefined then the value of pull.rebase is used. The default
of that variable is false.

Variable: branch.NAME.pushRemote
This variable specifies the remote that the branch named NAME is
usually pushed to. The value has to be the name of an existing
remote.

It is not possible to specify the name of branch to push the local
branch to. The name of the remote branch is always the same as the
name of the local branch.

If this variable is undefined but remote.pushDefault is defined,
then the value of the latter is used. By default remote.pushDefault
is undefined.

Variable: branch.NAME.description
This variable can be used to describe the branch named NAME. That
description is used e.g. when turning the branch into a series of
patches.

The following variables specify defaults which are used if the above
branch-specific variables are not set.

Variable: pull.rebase
This variable specifies whether pulling is done by rebasing or by
merging. It can be overwritten using branch.NAME.rebase.

	When true then pulling is done by rebasing.

	When false (the default) then pulling is done by merging.

Since it is never a good idea to merge the upstream branch into a
feature or hotfix branch and most branches are such branches, you
should consider setting this to true, and branch.master.rebase to
false.

Variable: remote.pushDefault
This variable specifies what remote the local branches are usually
pushed to. This can be overwritten per branch using
branch.NAME.pushRemote.

The following variables are used during the creation of a branch and
control whether the various branch-specific variables are
automatically set at this time.

Variable: branch.autoSetupMerge
This variable specifies under what circumstances creating a branch
NAME should result in the variables branch.NAME.merge and
branch.NAME.remote being set according to the starting point used to
create the branch. If the starting point isn’t a branch, then these
variables are never set.

	When always then the variables are set regardless of whether the
starting point is a local or a remote branch.

	When true (the default) then the variables are set when the starting
point is a remote branch, but not when it is a local branch.

	When false then the variables are never set.

Variable: branch.autoSetupRebase
This variable specifies whether creating a branch NAME should result
in the variable branch.NAME.rebase being set to true.

	When always then the variable is set regardless of whether the
starting point is a local or a remote branch.

	When local then the variable are set when the starting point is a
local branch, but not when it is a remote branch.

	When remote then the variable are set when the starting point is a
remote branch, but not when it is a local branch.

	When never (the default) then the variable is never set.

Note that the respective commands always change the repository-local
values. If you want to change the global value, which is used when
the local value is undefined, then you have to do so on the command
line, e.g.:

git config --global remote.autoSetupMerge always

For more information about these variables you should also see

Also see
,
 and Pushing.

User Option: magit-prefer-remote-upstream
This option controls whether commands that read a branch from the
user and then set it as the upstream branch, offer a local or a
remote branch as default completion candidate, when they have the
choice.

This affects all commands that use magit-read-upstream-branch or
magit-read-starting-point, which includes all commands that change
the upstream and many which create new branches.

Auxiliary Branch Commands

These commands are not available from the transient magit-branch by
default.

Command: magit-branch-shelve
This command shelves a branch. This is done by deleting the branch,
and creating a new reference "refs/shelved/BRANCH-NAME" pointing at
the same commit as the branch pointed at. If the deleted branch had
a reflog, then that is preserved as the reflog of the new reference.

This is useful if you want to move a branch out of sight, but are
not ready to completely discard it yet.

Command: magit-branch-unshelve
This command unshelves a branch that was previously shelved using
magit-branch-shelve. This is done by deleting the reference
"refs/shelved/BRANCH-NAME" and creating a branch "BRANCH-NAME"
pointing at the same commit as the deleted reference pointed at.
If the deleted reference had a reflog, then that is restored as
the reflog of the branch.

Merging

Also see
 For information on how to resolve
merge conflicts see the next section.

	m (magit-merge)

	This transient prefix command binds the following suffix commands
along with the appropriate infix arguments and displays them in a
temporary buffer until a suffix is invoked.

When no merge is in progress, then the transient features the
following suffix commands.

	m m (magit-merge-plain)

	This command merges another branch or an arbitrary revision into the
current branch. The branch or revision to be merged is read in the
minibuffer and defaults to the branch at point.

Unless there are conflicts or a prefix argument is used, then the
resulting merge commit uses a generic commit message, and the user
does not get a chance to inspect or change it before the commit is
created. With a prefix argument this does not actually create the
merge commit, which makes it possible to inspect how conflicts were
resolved and to adjust the commit message.

	m e (magit-merge-editmsg)

	This command merges another branch or an arbitrary revision into the
current branch and opens a commit message buffer, so that the user
can make adjustments. The commit is not actually created until the
user finishes with C-c C-c.

	m n (magit-merge-nocommit)

	This command merges another branch or an arbitrary revision into the
current branch, but does not actually create the merge commit. The
user can then further adjust the merge, even when automatic conflict
resolution succeeded and/or adjust the commit message.

	m a (magit-merge-absorb)

	This command merges another local branch into the current branch and
then removes the former.

Before the source branch is merged, it is first force pushed to its
push-remote, provided the respective remote branch already exists.
This ensures that the respective pull-request (if any) won’t get
stuck on some obsolete version of the commits that are being merged.
Finally, if magit-branch-pull-request was used to create the merged
branch, then the respective remote branch is also removed.

	m i (magit-merge-into)

	This command merges the current branch into another local branch and
then removes the former. The latter becomes the new current branch.

Before the source branch is merged, it is first force pushed to its
push-remote, provided the respective remote branch already exists.
This ensures that the respective pull-request (if any) won’t get
stuck on some obsolete version of the commits that are being merged.
Finally, if magit-branch-pull-request was used to create the merged
branch, then the respective remote branch is also removed.

	m s (magit-merge-squash)

	This command squashes the changes introduced by another branch or an
arbitrary revision into the current branch. This only applies the
changes made by the squashed commits. No information is preserved
that would allow creating an actual merge commit. Instead of this
command you should probably use a command from the apply transient.

	m p (magit-merge-preview)

	This command shows a preview of merging another branch or an
arbitrary revision into the current branch.

When a merge is in progress, then the transient instead features the
following suffix commands.

	m m (magit-merge)

	After the user resolved conflicts, this command proceeds with the
merge. If some conflicts weren’t resolved, then this command fails.

	m a (magit-merge-abort)

	This command aborts the current merge operation.

Resolving Conflicts

When merging branches (or otherwise combining or changing history)
conflicts can occur. If you edited two completely different parts of
the same file in two branches and then merge one of these branches
into the other, then Git can resolve that on its own, but if you edit
the same area of a file, then a human is required to decide how the
two versions, or "sides of the conflict", are to be combined into one.

Here we can only provide a brief introduction to the subject and point
you toward some tools that can help. If you are new to this, then
please also consult Git’s own documentation as well as other
resources.

If a file has conflicts and Git cannot resolve them by itself, then it
puts both versions into the affected file along with special markers
whose purpose is to denote the boundaries of the unresolved part of
the file and between the different versions. These boundary lines
begin with the strings consisting of six times the same character, one
of <, |, = and > and are followed by information about the source of
the respective versions, e.g.:

<<<<<<< HEAD
Take the blue pill.
=======
Take the red pill.
>>>>>>> feature

In this case you have chosen to take the red pill on one branch and on
another you picked the blue pill. Now that you are merging these two
diverging branches, Git cannot possibly know which pill you want to
take.

To resolve that conflict you have to create a version of the affected
area of the file by keeping only one of the sides, possibly by editing
it in order to bring in the changes from the other side, remove the
other versions as well as the markers, and then stage the result. A
possible resolution might be:

Take both pills.

Often it is useful to see not only the two sides of the conflict but
also the "original" version from before the same area of the file was
modified twice on different branches. Instruct Git to insert that
version as well by running this command once:

git config --global merge.conflictStyle diff3

The above conflict might then have looked like this:

<<<<<<< HEAD
Take the blue pill.
||||||| merged common ancestors
Take either the blue or the red pill, but not both.
=======
Take the red pill.
>>>>>>> feature

If that were the case, then the above conflict resolution would not
have been correct, which demonstrates why seeing the original version
alongside the conflicting versions can be useful.

You can perform the conflict resolution completely by hand, but Emacs
also provides some packages that help in the process: Smerge, Ediff
(), and Emerge (). Magit does not provide
its own tools for conflict resolution, but it does make using Smerge
and Ediff more convenient. (Ediff supersedes Emerge, so you probably
don’t want to use the latter anyway.)

In the Magit status buffer, files with unresolved conflicts are listed
in the "Unstaged changes" and/or "Staged changes" sections. They are
prefixed with the word "unmerged", which in this context essentially
is a synonym for "unresolved".

Pressing RET while point is on such a file section shows a buffer
visiting that file, turns on smerge-mode in that buffer, and places
point inside the first area with conflicts. You should then resolve
that conflict using regular edit commands and/or Smerge commands.

Unfortunately Smerge does not have a manual, but you can get a list of
commands and binding C-c ^ C-h and press RET while point is on a
command name to read its documentation.

Normally you would edit one version and then tell Smerge to keep only
that version. Use C-c ^ m (smerge-keep-mine) to keep the HEAD
version or C-c ^ o (smerge-keep-other) to keep the version that
follows "|||||||". Then use C-c ^ n to move to the next conflicting
area in the same file. Once you are done resolving conflicts, return
to the Magit status buffer. The file should now be shown as
"modified", no longer as "unmerged", because Smerge automatically
stages the file when you save the buffer after resolving the last
conflict.

Magit now wraps the mentioned Smerge commands, allowing you to use
these key bindings without having to go to the file-visiting buffer.
Additionally k (magit-discard) on a hunk with unresolved conflicts
asks which side to keep or, if point is on a side, then it keeps it
without prompting. Similarly k on a unresolved file ask which side
to keep.

Alternatively you could use Ediff, which uses separate buffers for the
different versions of the file. To resolve conflicts in a file using
Ediff press e while point is on such a file in the status buffer.

Ediff can be used for other purposes as well. For more information on
how to enter Ediff from Magit, see Ediffing. Explaining how to use
Ediff is beyond the scope of this manual, instead see .

If you are unsure whether you should Smerge or Ediff, then use the
former. It is much easier to understand and use, and except for
truly complex conflicts, the latter is usually overkill.

Rebasing

Also see
 For information on how to resolve
conflicts that occur during rebases see the preceding section.

	r (magit-rebase)

	This transient prefix command binds the following suffix commands
along with the appropriate infix arguments and displays them in a
temporary buffer until a suffix is invoked.

When no rebase is in progress, then the transient features the
following suffix commands.

Using one of these commands starts a rebase sequence. Git might then
stop somewhere along the way, either because you told it to do so, or
because applying a commit failed due to a conflict. When that
happens, then the status buffer shows information about the rebase
sequence which is in progress in a section similar to a log section.
See Information About In-Progress Rebase.

For information about the upstream and the push-remote, see The Two Remotes.

	r p (magit-rebase-onto-pushremote)

	This command rebases the current branch onto its push-remote.

With a prefix argument or when the push-remote is either not
configured or unusable, then let the user first configure the
push-remote.

	r u (magit-rebase-onto-upstream)

	This command rebases the current branch onto its upstream branch.

With a prefix argument or when the upstream is either not
configured or unusable, then let the user first configure
the upstream.

	r e (magit-rebase-branch)

	This command rebases the current branch onto a branch read in the
minibuffer. All commits that are reachable from head but not from
the selected branch TARGET are being rebased.

	r s (magit-rebase-subset)

	This command starts a non-interactive rebase sequence to transfer
commits from START to HEAD onto NEWBASE. START has to be selected
from a list of recent commits.

By default Magit uses the --autostash argument, which causes
uncommitted changes to be stored in a stash before the rebase begins.
These changes are restored after the rebase completes and if possible
the stash is removed. If the stash does not apply cleanly, then the
stash is not removed. In case something goes wrong when resolving
the conflicts, this allows you to start over.

Even though one of the actions is dedicated to interactive rebases,
the transient also features the infix argument --interactive. This
can be used to turn one of the other, non-interactive rebase variants
into an interactive rebase.

For example if you want to clean up a feature branch and at the same
time rebase it onto master, then you could use r-iu. But we recommend
that you instead do that in two steps. First use ri to cleanup the
feature branch, and then in a second step ru to rebase it onto master.
That way if things turn out to be more complicated than you thought
and/or you make a mistake and have to start over, then you only have
to redo half the work.

Explicitly enabling --interactive won’t have an effect on the
following commands as they always use that argument anyway, even if it
is not enabled in the transient.

	r i (magit-rebase-interactive)

	This command starts an interactive rebase sequence.

	r f (magit-rebase-autosquash)

	This command combines squash and fixup commits with their intended
targets.

	r m (magit-rebase-edit-commit)

	This command starts an interactive rebase sequence that lets the
user edit a single older commit.

	r w (magit-rebase-reword-commit)

	This command starts an interactive rebase sequence that lets the
user reword a single older commit.

	r k (magit-rebase-remove-commit)

	This command removes a single older commit using rebase.

When a rebase is in progress, then the transient instead features
the following suffix commands.

	r r (magit-rebase-continue)

	This command restart the current rebasing operation.

In some cases this pops up a commit message buffer for you do edit.
With a prefix argument the old message is reused as-is.

	r s (magit-rebase-skip)

	This command skips the current commit and restarts the current
rebase operation.

	r e (magit-rebase-edit)

	This command lets the user edit the todo list of the current rebase
operation.

	r a (magit-rebase-abort)

	This command aborts the current rebase operation, restoring the
original branch.

Editing Rebase Sequences

	C-c C-c (with-editor-finish)

	Finish the current editing session by returning with exit code 0.
Git then uses the rebase instructions it finds in the file.

	C-c C-k (with-editor-cancel)

	Cancel the current editing session by returning with exit code 1.
Git then forgoes starting the rebase sequence.

	RET (git-rebase-show-commit)

	Show the commit on the current line in another buffer and select
that buffer.

	SPC (git-rebase-show-or-scroll-up)

	Show the commit on the current line in another buffer without
selecting that buffer. If the revision buffer is already visible in
another window of the current frame, then instead scroll that window
up.

	DEL (git-rebase-show-or-scroll-down)

	Show the commit on the current line in another buffer without
selecting that buffer. If the revision buffer is already visible in
another window of the current frame, then instead scroll that window
down.

	p (git-rebase-backward-line)

	Move to previous line.

	n (forward-line)

	Move to next line.

	M-p (git-rebase-move-line-up)

	Move the current commit (or command) up.

	M-n (git-rebase-move-line-down)

	Move the current commit (or command) down.

	r (git-rebase-reword)

	Edit message of commit on current line.

	e (git-rebase-edit)

	Stop at the commit on the current line.

	s (git-rebase-squash)

	Meld commit on current line into previous commit, and edit message.

	f (git-rebase-fixup)

	Meld commit on current line into previous commit, discarding the
current commit’s message.

	k (git-rebase-kill-line)

	Kill the current action line.

	c (git-rebase-pick)

	Use commit on current line.

	x (git-rebase-exec)

	Insert a shell command to be run after the proceeding commit.

If there already is such a command on the current line, then edit
that instead. With a prefix argument insert a new command even when
there already is one on the current line. With empty input remove
the command on the current line, if any.

	b (git-rebase-break)

	Insert a break action before the current line, instructing Git to
return control to the user.

	y (git-rebase-insert)

	Read an arbitrary commit and insert it below current line.

	C-x u (git-rebase-undo)

	Undo some previous changes. Like undo but works in read-only
buffers.

User Option: git-rebase-auto-advance
Whether to move to next line after changing a line.

User Option: git-rebase-show-instructions
Whether to show usage instructions inside the rebase buffer.

User Option: git-rebase-confirm-cancel
Whether confirmation is required to cancel.

When a rebase is performed with the --rebase-merges option, the
sequence will include a few other types of actions and the following
commands become relevant.

	l (git-rebase-label)

	This commands inserts a label action or edits the one at point.

	t (git-rebase-reset)

	This command inserts a reset action or edits the one at point. The
prompt will offer the labels that are currently present in the
buffer.

	MM (git-rebase-merge)

	The command inserts a merge action or edits the one at point. The
prompt will offer the labels that are currently present in the
buffer. Specifying a message to reuse via -c or -C is not
supported; an editor will always be invoked for the merge.

	Mt (git-rebase-merge-toggle-editmsg)

	This command toggles between the -C and -c options of the merge
action at point. These options both specify a commit whose message
should be reused. The lower-case variant instructs Git to invoke
the editor when creating the merge, allowing the user to edit the
message.

Information About In-Progress Rebase

While a rebase sequence is in progress, the status buffer features a
section that lists the commits that have already been applied as well
as the commits that still have to be applied.

The commits are split in two halves. When rebase stops at a commit,
either because the user has to deal with a conflict or because s/he
explicitly requested that rebase stops at that commit, then point is
placed on the commit that separates the two groups, i.e. on HEAD. The
commits above it have not been applied yet, while the HEAD and the
commits below it have already been applied. In between these two
groups of applied and yet-to-be applied commits, there sometimes is a
commit which has been dropped.

Each commit is prefixed with a word and these words are additionally
shown in different colors to indicate the status of the commits.

The following colors are used:

	Yellow commits have not been applied yet.

	Gray commits have already been applied.

	The blue commit is the HEAD commit.

	The green commit is the commit the rebase sequence stopped at. If
this is the same commit as HEAD (e.g. because you haven’t done
anything yet after rebase stopped at the commit, then this commit is
shown in blue, not green). There can only be a green and a blue
commit at the same time, if you create one or more new commits after
rebase stops at a commit.

	Red commits have been dropped. They are shown for reference only,
e.g. to make it easier to diff.

Of course these colors are subject to the color-theme in use.

The following words are used:

	Commits prefixed with pick, reword, edit, squash, and fixup have not
been applied yet. These words have the same meaning here as they do
in the buffer used to edit the rebase sequence. See Editing Rebase Sequences. When the --rebase-merges option was specified,
reset, label, and merge lines may also be present.

	Commits prefixed with done and onto have already been applied.
It is possible for such a commit to be the HEAD, in which case it
is blue. Otherwise it is grey.

	The commit prefixed with onto is the commit on top of which all
the other commits are being re-applied. This commit itself did
not have to be re-applied, it is the commit rebase did rewind to
before starting to re-apply other commits.

	Commits prefixed with done have already been re-applied. This
includes commits that have been re-applied but also new commits
that you have created during the rebase.

	All other commits, those not prefixed with any of the above words,
are in some way related to the commit at which rebase stopped.

To determine whether a commit is related to the stopped-at commit
their hashes, trees and patch-ids [1] are being compared.
The commit message is not used for this purpose.

Generally speaking commits that are related to the stopped-at commit
can have any of the used colors, though not all color/word
combinations are possible.

Words used for stopped-at commits are:

	When a commit is prefixed with void, then that indicates that
Magit knows for sure that all the changes in that commit have been
applied using several new commits. This commit is no longer
reachable from HEAD, and it also isn’t one of the commits that
will be applied when resuming the session.

	When a commit is prefixed with join, then that indicates that the
rebase sequence stopped at that commit due to a conflict - you now
have to join (merge) the changes with what has already been
applied. In a sense this is the commit rebase stopped at, but
while its effect is already in the index and in the worktree (with
conflict markers), the commit itself has not actually been applied
yet (it isn’t the HEAD). So it is shown in yellow, like the other
commits that still have to be applied.

	When a commit is prefixed with stop or a blue or green same, then
that indicates that rebase stopped at this commit, that it is
still applied or has been applied again, and that at least its
patch-id is unchanged.

	When a commit is prefixed with stop, then that indicates that
rebase stopped at that commit because you requested that
earlier, and its patch-id is unchanged. It might even still be
the exact same commit.

	When a commit is prefixed with a blue or green same, then that
indicates that while its tree or hash changed, its patch-id did
not. If it is blue, then it is the HEAD commit (as always for
blue). When it is green, then it no longer is HEAD because
other commit have been created since (but before continuing the
rebase).

	When a commit is prefixed with goal, a yellow same, or work, then
that indicates that rebase applied that commit but that you then
reset HEAD to an earlier commit (likely to split it up into
multiple commits), and that there are some uncommitted changes
remaining which likely (but not necessarily) originate from that
commit.

	When a commit is prefixed with goal, then that indicates that it
is still possible to create a new commit with the exact same
tree (the "goal") without manually editing any files, by
committing the index, or by staging all changes and then
committing that. This is the case when the original tree still
exists in the index or worktree in untainted form.

	When a commit is prefixed with a yellow same, then that
indicates that it is no longer possible to create a commit with
the exact same tree, but that it is still possible to create a
commit with the same patch-id. This would be the case if you
created a new commit with other changes, but the changes from
the original commit still exist in the index or working tree in
untainted form.

	When a commit is prefixed with work, then that indicates that
you reset HEAD to an earlier commit, and that there are some
staged and/or unstaged changes (likely, but not necessarily)
originating from that commit. However it is no longer possible
to create a new commit with the same tree or at least the same
patch-id because you have already made other changes.

	When a commit is prefixed with poof or gone, then that indicates
that rebase applied that commit but that you then reset HEAD to an
earlier commit (likely to split it up into multiple commits), and
that there are no uncommitted changes.

	When a commit is prefixed with poof, then that indicates that it
is no longer reachable from HEAD, but that it has been replaced
with one or more commits, which together have the exact same
effect.

	When a commit is prefixed with gone, then that indicates that it
is no longer reachable from HEAD and that we also cannot
determine whether its changes are still in effect in one or more
new commits. They might be, but if so, then there must also be
other changes which makes it impossible to know for sure.

Do not worry if you do not fully understand the above. That’s okay,
you will acquire a good enough understanding through practice.

For other sequence operations such as cherry-picking, a similar section
is displayed, but they lack some of the features described above, due
to limitations in the git commands used to implement them. Most
importantly these sequences only support "picking" a commit but not
other actions such as "rewording", and they do not keep track of the
commits which have already been applied.

[1] The patch-id is a hash of the changes introduced by a
commit. It differs from the hash of the commit itself, which is a
hash of the result of applying that change (i.e. the resulting trees
and blobs) as well as author and committer information, the commit
message, and the hashes of the parents of the commit. The patch-id
hash on the other hand is created only from the added and removed
lines, even line numbers and whitespace changes are ignored when
calculating this hash. The patch-ids of two commits can be used to
answer the question "Do these commits make the same change?".

Cherry Picking

Also see

	A (magit-cherry-pick)

	This transient prefix command binds the following suffix commands
along with the appropriate infix arguments and displays them in a
temporary buffer until a suffix is invoked.

When no cherry-pick or revert is in progress, then the transient
features the following suffix commands.

	A A (magit-cherry-copy)

	This command copies COMMITS from another branch onto the current
branch. If the region selects multiple commits, then those are
copied, without prompting. Otherwise the user is prompted for a
commit or range, defaulting to the commit at point.

	A a (magit-cherry-apply)

	This command applies the changes in COMMITS from another branch onto
the current branch. If the region selects multiple commits, then
those are used, without prompting. Otherwise the user is prompted
for a commit or range, defaulting to the commit at point.

This command also has a top-level binding, which can be invoked
without using the transient by typing a at the top-level.

The following commands not only apply some commits to some branch, but
also remove them from some other branch. The removal is performed
using either git-update-ref or if necessary git-rebase. Both applying
commits as well as removing them using git-rebase can lead to
conflicts. If that happens, then these commands abort and you not
only have to resolve the conflicts but also finish the process the
same way you would have to if these commands didn’t exist at all.

	A h (magit-cherry-harvest)

	This command moves the selected COMMITS that must be located on
another BRANCH onto the current branch instead, removing them from
the former. When this command succeeds, then the same branch is
current as before.

Applying the commits on the current branch or removing them from the
other branch can lead to conflicts. When that happens, then this
command stops and you have to resolve the conflicts and then finish
the process manually.

	A d (magit-cherry-donate)

	This command moves the selected COMMITS from the current branch onto
another existing BRANCH, removing them from the former. When this
command succeeds, then the same branch is current as before. HEAD
is allowed to be detached initially.

Applying the commits on the other branch or removing them from the
current branch can lead to conflicts. When that happens, then this
command stops and you have to resolve the conflicts and then finish
the process manually.

	A n (magit-cherry-spinout)

	This command moves the selected COMMITS from the current branch onto
a new branch BRANCH, removing them from the former. When this
command succeeds, then the same branch is current as before.

Applying the commits on the other branch or removing them from the
current branch can lead to conflicts. When that happens, then this
command stops and you have to resolve the conflicts and then finish
the process manually.

	A s (magit-cherry-spinoff)

	This command moves the selected COMMITS from the current branch onto
a new branch BRANCH, removing them from the former. When this
command succeeds, then the new branch is checked out.

Applying the commits on the other branch or removing them from the
current branch can lead to conflicts. When that happens, then this
command stops and you have to resolve the conflicts and then finish
the process manually.

When a cherry-pick or revert is in progress, then the transient
instead features the following suffix commands.

	A A (magit-sequence-continue)

	Resume the current cherry-pick or revert sequence.

	A s (magit-sequence-skip)

	Skip the stopped at commit during a cherry-pick or revert sequence.

	A a (magit-sequence-abort)

	Abort the current cherry-pick or revert sequence. This discards all
changes made since the sequence started.

Reverting

	V (magit-revert)

	This transient prefix command binds the following suffix commands
along with the appropriate infix arguments and displays them in a
temporary buffer until a suffix is invoked.

When no cherry-pick or revert is in progress, then the transient
features the following suffix commands.

	V V (magit-revert-and-commit)

	Revert a commit by creating a new commit. Prompt for a commit,
defaulting to the commit at point. If the region selects multiple
commits, then revert all of them, without prompting.

	V v (magit-revert-no-commit)

	Revert a commit by applying it in reverse to the working tree.
Prompt for a commit, defaulting to the commit at point. If the
region selects multiple commits, then revert all of them, without
prompting.

When a cherry-pick or revert is in progress, then the transient
instead features the following suffix commands.

	V A (magit-sequence-continue)

	Resume the current cherry-pick or revert sequence.

	V s (magit-sequence-skip)

	Skip the stopped at commit during a cherry-pick or revert sequence.

	V a (magit-sequence-abort)

	Abort the current cherry-pick or revert sequence. This discards all
changes made since the sequence started.

Resetting

Also see

	x (magit-reset-quickly)

	Reset the HEAD and index to some commit read from the user and
defaulting to the commit at point, and possibly also reset the
working tree. With a prefix argument reset the working tree
otherwise don’t.

	X m (magit-reset-mixed)

	Reset the HEAD and index to some commit read from the user and
defaulting to the commit at point. The working tree is kept as-is.

	X s (magit-reset-soft)

	Reset the HEAD to some commit read from the user and defaulting
to the commit at point. The index and the working tree are kept
as-is.

	X h (magit-reset-hard)

	Reset the HEAD, index, and working tree to some commit read from the
user and defaulting to the commit at point.

	X k (magit-reset-keep)

	Reset the HEAD, index, and working tree to some commit read from the
user and defaulting to the commit at point. Uncommitted changes are
kept as-is.

	X i (magit-reset-index)

	Reset the index to some commit read from the user and defaulting to
the commit at point. Keep the HEAD and working tree as-is, so if
the commit refers to the HEAD, then this effectively unstages all
changes.

	X w (magit-reset-worktree)

	Reset the working tree to some commit read from the user and
defaulting to the commit at point. Keep the HEAD and index as-is.

	X f (magit-file-checkout)

	Update file in the working tree and index to the contents from a
revision. Both the revision and file are read from the user.

Stashing

Also see

	z (magit-stash)

	This transient prefix command binds the following suffix commands
along with the appropriate infix arguments and displays them in a
temporary buffer until a suffix is invoked.

	z z (magit-stash-both)

	Create a stash of the index and working tree. Untracked files are
included according to infix arguments. One prefix argument is
equivalent to --include-untracked while two prefix arguments are
equivalent to --all.

	z i (magit-stash-index)

	Create a stash of the index only. Unstaged and untracked changes
are not stashed.

	z w (magit-stash-worktree)

	Create a stash of unstaged changes in the working tree. Untracked
files are included according to infix arguments. One prefix
argument is equivalent to --include-untracked while two prefix
arguments are equivalent to --all.

	z x (magit-stash-keep-index)

	Create a stash of the index and working tree, keeping index intact.
Untracked files are included according to infix arguments. One
prefix argument is equivalent to --include-untracked while two
prefix arguments are equivalent to --all.

	z Z (magit-snapshot-both)

	Create a snapshot of the index and working tree. Untracked files
are included according to infix arguments. One prefix argument is
equivalent to --include-untracked while two prefix arguments are
equivalent to --all.

	z I (magit-snapshot-index)

	Create a snapshot of the index only. Unstaged and untracked changes
are not stashed.

	z W (magit-snapshot-worktree)

	Create a snapshot of unstaged changes in the working tree.
Untracked files are included according to infix arguments. One
prefix argument is equivalent to --include-untracked while two
prefix arguments are equivalent to --all-.

	z a (magit-stash-apply)

	Apply a stash to the working tree. Try to preserve the stash index.
If that fails because there are staged changes, apply without
preserving the stash index.

	z p (magit-stash-pop)

	Apply a stash to the working tree and remove it from stash list.
Try to preserve the stash index. If that fails because there are
staged changes, apply without preserving the stash index and forgo
removing the stash.

	z k (magit-stash-drop)

	Remove a stash from the stash list. When the region is active, offer
to drop all contained stashes.

	z v (magit-stash-show)

	Show all diffs of a stash in a buffer.

	z b (magit-stash-branch)

	Create and checkout a new BRANCH from STASH. The branch starts at
the commit that was current when the stash was created.

	z B (magit-stash-branch-here)

	Create and checkout a new BRANCH using magit-branch with the current
branch or HEAD as the starting-point. Then apply STASH, dropping it
if it applies cleanly.

	z f (magit-stash-format-patch)

	Create a patch from STASH.

	k (magit-stash-clear)

	Remove all stashes saved in REF’s reflog by deleting REF.

	z l (magit-stash-list)

	List all stashes in a buffer.

User Option: magit-stashes-margin
This option specifies whether the margin is initially shown in
stashes buffers and how it is formatted.

The value has the form (INIT STYLE WIDTH AUTHOR AUTHOR-WIDTH).

	If INIT is non-nil, then the margin is shown initially.

	STYLE controls how to format the author or committer date. It can
be one of age (to show the age of the commit), age-abbreviated (to
abbreviate the time unit to a character), or a string (suitable
for format-time-string) to show the actual date. Option
magit-log-margin-show-committer-date controls which date is being
displayed.

	WIDTH controls the width of the margin. This exists for forward
compatibility and currently the value should not be changed.

	AUTHOR controls whether the name of the author is also shown by
default.

	AUTHOR-WIDTH has to be an integer. When the name of the author
is shown, then this specifies how much space is used to do so.

Chapter 7. Transferring

Remotes

Remote Commands

The transient prefix command magit-remote is used to add remotes and
to make changes to existing remotes. This command only deals with
remotes themselves, not with branches or the transfer of commits.
Those features are available from separate transient commands.

Also see

	M (magit-remote)

	This transient prefix command binds the following suffix commands
and displays them in a temporary buffer until a suffix is invoked.

By default it also binds and displays the values of some
remote-related Git variables and allows changing their values.

User Option: magit-remote-direct-configure
This option controls whether remote-related Git variables are
accessible directly from the transient magit-remote.

If t (the default) and a local branch is checked out, then
magit-remote features the variables for the upstream remote of that
branch, or if HEAD is detached, for origin, provided that exists.

If nil, then magit-remote-configure has to be used to do so.

	M C (magit-remote-configure)

	This transient prefix command binds commands that set the value of
remote-related variables and displays them in a temporary buffer
until the transient is exited.

With a prefix argument, this command always prompts for a remote.

Without a prefix argument this depends on whether it was invoked as
a suffix of magit-remote and on the magit-remote-direct-configure
option. If magit-remote already displays the variables for the
upstream, then it does not make sense to invoke another transient
that displays them for the same remote. In that case this command
prompts for a remote.

The variables are described in Remote Git Variables.

	M a (magit-remote-add)

	This command add a remote and fetches it. The remote name and url
are read in the minibuffer.

	M r (magit-remote-rename)

	This command renames a remote. Both the old and the new names are
read in the minibuffer.

	M u (magit-remote-set-url)

	This command changes the url of a remote. Both the remote and the
new url are read in the minibuffer.

	M k (magit-remote-remove)

	This command deletes a remote, read in the minibuffer.

	M p (magit-remote-prune)

	This command removes stale remote-tracking branches for a remote
read in the minibuffer.

	M P (magit-remote-prune-refspecs)

	This command removes stale refspecs for a remote read in the
minibuffer.

A refspec is stale if there no longer exists at least one branch
on the remote that would be fetched due to that refspec. A stale
refspec is problematic because its existence causes Git to refuse
to fetch according to the remaining non-stale refspecs.

If only stale refspecs remain, then this command offers to either
delete the remote or to replace the stale refspecs with the default
refspec ("+refs/heads/*:refs/remotes/REMOTE/*").

This command also removes the remote-tracking branches that were
created due to the now stale refspecs. Other stale branches are
not removed.

User Option: magit-remote-add-set-remote.pushDefault
This option controls whether the user is asked whether they want to
set remote.pushDefault after adding a remote.

If ask, then users is always ask. If ask-if-unset, then the user is
only if the variable isn’t set already. If nil, then the user isn’t
asked and the variable isn’t set. If the value is a string, then
the variable is set without the user being asked, provided that the
name of the added remote is equal to that string and the variable
isn’t already set.

Remote Git Variables

These variables can be set from the transient prefix command
magit-remote-configure. By default they can also be set from
magit-remote. See Remote Commands.

Variable: remote.NAME.url
This variable specifies the url of the remote named NAME. It can
have multiple values.

Variable: remote.NAME.fetch
The refspec used when fetching from the remote named NAME. It can
have multiple values.

Variable: remote.NAME.pushurl
This variable specifies the url used for fetching from the remote
named NAME. If it is not specified, then remote.NAME.url is used
instead. It can have multiple values.

Variable: remote.NAME.push
The refspec used when pushing to the remote named NAME. It can
have multiple values.

Variable: remote.NAME.tagOpts
This variable specifies what tags are fetched by default. If the
value is --no-tags then no tags are fetched. If the value is
--tags, then all tags are fetched. If this variable has no value,
then only tags are fetched that are reachable from fetched branches.

Fetching

Also see
 For information about the upstream and the
push-remote, see The Two Remotes.

	f (magit-fetch)

	This transient prefix command binds the following suffix commands
along with the appropriate infix arguments and displays them in a
temporary buffer until a suffix is invoked.

	f p (magit-fetch-from-pushremote)

	This command fetches from the current push-remote.

With a prefix argument or when the push-remote is either not
configured or unusable, then let the user first configure the
push-remote.

	f u (magit-fetch-from-upstream)

	This command fetch from the upstream of the current branch.

If the upstream is configured for the current branch and names
an existing remote, then use that. Otherwise try to use another
remote: If only a single remote is configured, then use that.
Otherwise if a remote named "origin" exists, then use that.

If no remote can be determined, then this command is not available
from the magit-fetch transient prefix and invoking it directly
results in an error.

	f e (magit-fetch-other)

	This command fetch from a repository read from the minibuffer.

	f o (magit-fetch-branch)

	This command fetches a branch from a remote, both of which are read
from the minibuffer.

	f r (magit-fetch-refspec)

	This command fetches from a remote using an explicit refspec, both
of which are read from the minibuffer.

	f a (magit-fetch-all)

	This command fetches from all remotes.

	f m (magit-submodule-fetch)

	This command fetches all submodules. With a prefix argument it
fetches all remotes of all submodules.

User Option: magit-pull-or-fetch
By default fetch and pull commands are available from separate
transient prefix command. Setting this to t adds some (but not all)
of the above suffix commands to the magit-pull transient.

If you do that, then you might also want to change the key binding
for these prefix commands, e.g.:

(setq magit-pull-or-fetch t)
(define-key magit-mode-map "f" 'magit-pull) ; was magit-fetch
(define-key magit-mode-map "F" nil) ; was magit-pull

Pulling

Also see
 For information about the upstream and the
push-remote, see The Two Remotes.

	F (magit-pull)

	This transient prefix command binds the following suffix commands
and displays them in a temporary buffer until a suffix is invoked.

	F p (magit-pull-from-pushremote)

	This command pulls from the push-remote of the current branch.

With a prefix argument or when the push-remote is either not
configured or unusable, then let the user first configure the
push-remote.

	F u (magit-pull-from-upstream)

	This command pulls from the upstream of the current branch.

With a prefix argument or when the upstream is either not
configured or unusable, then let the user first configure
the upstream.

	F e (magit-pull-branch)

	This command pulls from a branch read in the minibuffer.

Pushing

Also see
 For information about the upstream and the
push-remote, see The Two Remotes.

	P (magit-push)

	This transient prefix command binds the following suffix commands
along with the appropriate infix arguments and displays them in a
temporary buffer until a suffix is invoked.

	P p (magit-push-current-to-pushremote)

	This command pushes the current branch to its push-remote.

With a prefix argument or when the push-remote is either not
configured or unusable, then let the user first configure the
push-remote.

	P u (magit-push-current-to-upstream)

	This command pushes the current branch to its upstream branch.

With a prefix argument or when the upstream is either not
configured or unusable, then let the user first configure
the upstream.

	P e (magit-push-current)

	This command pushes the current branch to a branch read in the
minibuffer.

	P o (magit-push-other)

	This command pushes an arbitrary branch or commit somewhere. Both
the source and the target are read in the minibuffer.

	P r (magit-push-refspecs)

	This command pushes one or multiple refspecs to a remote, both of
which are read in the minibuffer.

To use multiple refspecs, separate them with commas. Completion is
only available for the part before the colon, or when no colon is
used.

	P m (magit-push-matching)

	This command pushes all matching branches to another repository.

If only one remote exists, then push to that. Otherwise prompt for
a remote, offering the remote configured for the current branch as
default.

	P t (magit-push-tags)

	This command pushes all tags to another repository.

If only one remote exists, then push to that. Otherwise prompt for
a remote, offering the remote configured for the current branch as
default.

	P T (magit-push-tag)

	This command pushes a tag to another repository.

One of the infix arguments, --force-with-lease, deserves a word of
caution. It is passed without a value, which means "permit a force
push as long as the remote-tracking branches match their counterparts
on the remote end". If you’ve set up a tool to do automatic fetches
(Magit itself does not provide such functionality), using
--force-with-lease can be dangerous because you don’t actually
control or know the state of the remote-tracking refs. In that case,
you should consider setting push.useForceIfIncludes to true
(available since Git 2.30).

Two more push commands exist, which by default are not available from
the push transient. See their doc-strings for instructions on how to
add them to the transient.

Command: magit-push-implicitly args
This command pushes somewhere without using an explicit refspec.

This command simply runs git push -v [ARGS]. ARGS are the infix
arguments. No explicit refspec arguments are used. Instead the
behavior depends on at least these Git variables: push.default,
remote.pushDefault, branch.<branch>.pushRemote,
branch.<branch>.remote, branch.<branch>.merge, and
remote.<remote>.push.

If you add this suffix to a transient prefix without explicitly
specifying the description, then an attempt is made to predict
what this command will do. For example:

(transient-insert-suffix 'magit-push \"p\"
 '(\"i\" magit-push-implicitly))"

Command: magit-push-to-remote remote args
This command pushes to the remote REMOTE without using an explicit
refspec. The remote is read in the minibuffer.

This command simply runs git push -v [ARGS] REMOTE. ARGS are the
infix arguments. No refspec arguments are used. Instead the
behavior depends on at least these Git variables: push.default,
remote.pushDefault, branch.<branch>.pushRemote,
branch.<branch>.remote, branch.<branch>.merge, and
remote.<remote>.push.

Plain Patches

	W (magit-patch)

	This transient prefix command binds the following suffix commands
along with the appropriate infix arguments and displays them in a
temporary buffer until a suffix is invoked.

	W c (magit-patch-create)

	This command creates patches for a set commits. If the region marks
several commits, then it creates patches for all of them. Otherwise
it functions as a transient prefix command, which features several
infix arguments and binds itself as a suffix command. When this
command is invoked as a suffix of itself, then it creates a patch
using the specified infix arguments.

	w a (magit-patch-apply)

	This command applies a patch. This is a transient prefix command,
which features several infix arguments and binds itself as a suffix
command. When this command is invoked as a suffix of itself, then
it applies a patch using the specified infix arguments.

	W s (magit-patch-save)

	This command creates a patch from the current diff.

Inside magit-diff-mode or magit-revision-mode buffers, C-x C-w is
also bound to this command.

It is also possible to save a plain patch file by using C-x C-w inside
a magit-diff-mode or magit-revision-mode buffer.

Maildir Patches

Also see
 and

	w (magit-am)

	This transient prefix command binds the following suffix commands
along with the appropriate infix arguments and displays them in a
temporary buffer until a suffix is invoked.

	w w (magit-am-apply-patches)

	This command applies one or more patches. If the region marks
files, then those are applied as patches. Otherwise this command
reads a file-name in the minibuffer, defaulting to the file at
point.

	w m (magit-am-apply-maildir)

	This command applies patches from a maildir.

	w a (magit-patch-apply)

	This command applies a plain patch. For a longer description see
Plain Patches. This command is only available from the magit-am
transient for historic reasons.

When an "am" operation is in progress, then the transient instead
features the following suffix commands.

	w w (magit-am-continue)

	This command resumes the current patch applying sequence.

	w s (magit-am-skip)

	This command skips the stopped at patch during a patch applying
sequence.

	w a (magit-am-abort)

	This command aborts the current patch applying sequence. This
discards all changes made since the sequence started.

Chapter 8. Miscellaneous

Tagging

Also see

	t (magit-tag)

	This transient prefix command binds the following suffix commands
along with the appropriate infix arguments and displays them in a
temporary buffer until a suffix is invoked.

	t t (magit-tag-create)

	This command creates a new tag with the given NAME at REV. With a
prefix argument it creates an annotated tag.

	t r (magit-tag-release)

	This commands creates a release tag. It assumes that release tags
match magit-release-tag-regexp.

First it prompts for the name of the new tag using the highest
existing tag as initial input and leaving it to the user to
increment the desired part of the version string. If you use
unconventional release tags or version numbers (e.g.,
v1.2.3-custom.1), you can set the magit-release-tag-regexp and
magit-tag-version-regexp-alist variables.

If --annotate is enabled then it prompts for the message of the
new tag. The proposed tag message is based on the message of the
highest tag, provided that that contains the corresponding version
string and substituting the new version string for that. Otherwise
it proposes something like "Foo-Bar 1.2.3", given, for example, a
TAG "v1.2.3" and a repository located at something like
"/path/to/foo-bar".

	t k (magit-tag-delete)

	This command deletes one or more tags. If the region marks multiple
tags (and nothing else), then it offers to delete those. Otherwise,
it prompts for a single tag to be deleted, defaulting to the tag at
point.

	t p (magit-tag-prune)

	This command offers to delete tags missing locally from REMOTE, and
vice versa.

Notes

Also see

	T (magit-notes)

	This transient prefix command binds the following suffix commands
along with the appropriate infix arguments and displays them in a
temporary buffer until a suffix is invoked.

	T T (magit-notes-edit)

	Edit the note attached to a commit, defaulting to the commit at
point.

By default use the value of Git variable core.notesRef or
"refs/notes/commits" if that is undefined.

	T r (magit-notes-remove)

	Remove the note attached to a commit, defaulting to the commit at
point.

By default use the value of Git variable core.notesRef or
"refs/notes/commits" if that is undefined.

	T p (magit-notes-prune)

	Remove notes about unreachable commits.

It is possible to merge one note ref into another. That may result in
conflicts which have to resolved in the temporary worktree
".git/NOTES_MERGE_WORKTREE".

	T m (magit-notes-merge)

	Merge the notes of a ref read from the user into the current notes
ref. The current notes ref is the value of Git variable
core.notesRef or "refs/notes/commits" if that is undefined.

When a notes merge is in progress then the transient features the
following suffix commands, instead of those listed above.

	T c (magit-notes-merge-commit)

	Commit the current notes ref merge, after manually resolving
conflicts.

	T a (magit-notes-merge-abort)

	Abort the current notes ref merge.

The following variables control what notes reference magit-notes-*,
git notes and git show act on and display. Both the local and global
values are displayed and can be modified.

Variable: core.notesRef
This variable specifies the notes ref that is displayed by default
and which commands act on by default.

Variable: notes.displayRef
This variable specifies additional notes ref to be displayed in
addition to the ref specified by core.notesRef. It can have
multiple values and may end with * to display all refs in the
refs/notes/ namespace (or ** if some names contain slashes).

Submodules

Also see

Listing Submodules

The command magit-list-submodules displays a list of the current
repository’s submodules in a separate buffer. It’s also possible to
display information about submodules directly in the status buffer of
the super-repository by adding magit-insert-modules to the hook
magit-status-sections-hook as described in Status Module Sections.

Command: magit-list-submodules
This command displays a list of the current repository’s submodules
in a separate buffer.

It can be invoked by pressing RET on the section titled "Modules".

User Option: magit-submodule-list-columns
This option controls what columns are displayed by the command
magit-list-submodules and how they are displayed.

Each element has the form (HEADER WIDTH FORMAT PROPS).

HEADER is the string displayed in the header. WIDTH is the width of
the column. FORMAT is a function that is called with one argument,
the repository identification (usually its basename), and with
default-directory bound to the toplevel of its working tree. It
has to return a string to be inserted or nil. PROPS is an alist
that supports the keys :right-align and :pad-right.

Submodule Transient

	o (magit-submodule)

	This transient prefix command binds the following suffix commands
along with the appropriate infix arguments and displays them in a
temporary buffer until a suffix is invoked.

Some of the below commands default to act on the modules that are
selected using the region. For brevity their description talk about
"the selected modules", but if no modules are selected, then they act
on the current module instead, or if point isn’t on a module, then the
read a single module to act on. With a prefix argument these commands
ignore the selection and the current module and instead act on all
suitable modules.

	o a (magit-submodule-add)

	This commands adds the repository at URL as a module. Optional PATH
is the path to the module relative to the root of the super-project.
If it is nil then the path is determined based on URL.

	o r (magit-submodule-register)

	This command registers the selected modules by copying their urls
from ".gitmodules" to "$GIT_DIR/config". These values can then be
edited before running magit-submodule-populate. If you don’t need
to edit any urls, then use the latter directly.

	o p (magit-submodule-populate)

	This command creates the working directory or directories of the
selected modules, checking out the recorded commits.

	o u (magit-submodule-update)

	This command updates the selected modules checking out the recorded
commits.

	o s (magit-submodule-synchronize)

	This command synchronizes the urls of the selected modules, copying
the values from ".gitmodules" to the ".git/config" of the
super-project as well those of the modules.

	o d (magit-submodule-unpopulate)

	This command removes the working directory of the selected modules.

	o l (magit-list-submodules)

	This command displays a list of the current repository’s modules.

	o f (magit-fetch-modules)

	This command fetches all modules.

Option magit-fetch-modules-jobs controls how many submodules are
being fetched in parallel. Also fetch the super-repository, because
git fetch does not support not doing that. With a prefix argument
fetch all remotes.

Subtree

Also see

	O (magit-subtree)

	This transient prefix command binds the two sub-transients; one for
importing a subtree and one for exporting a subtree.

	O i (magit-subtree-import)

	This transient prefix command binds the following suffix commands
along with the appropriate infix arguments and displays them in a
temporary buffer until a suffix is invoked.

The suffixes of this command import subtrees.

If the --prefix argument is set, then the suffix commands use that
prefix without prompting the user. If it is unset, then they read
the prefix in the minibuffer.

	O i a (magit-subtree-add)

	This command adds COMMIT from REPOSITORY as a new subtree at PREFIX.

	O i c (magit-subtree-add-commit)

	This command add COMMIT as a new subtree at PREFIX.

	O i m (magit-subtree-merge)

	This command merges COMMIT into the PREFIX subtree.

	O i f (magit-subtree-pull)

	This command pulls COMMIT from REPOSITORY into the PREFIX subtree.

	O e (magit-subtree-export)

	This transient prefix command binds the following suffix commands
along with the appropriate infix arguments and displays them in a
temporary buffer until a suffix is invoked.

The suffixes of this command export subtrees.

If the --prefix argument is set, then the suffix commands use that
prefix without prompting the user. If it is unset, then they read
the prefix in the minibuffer.

	O e p (magit-subtree-push)

	This command extract the history of the subtree PREFIX and pushes it
to REF on REPOSITORY.

	O e s (magit-subtree-split)

	This command extracts the history of the subtree PREFIX.

Worktree

Also see

	Z (magit-worktree)

	This transient prefix command binds the following suffix commands
and displays them in a temporary buffer until a suffix is invoked.

	Z b (magit-worktree-checkout)

	Checkout BRANCH in a new worktree at PATH.

	Z c (magit-worktree-branch)

	Create a new BRANCH and check it out in a new worktree at PATH.

	Z m (magit-worktree-move)

	Move an existing worktree to a new PATH.

	Z k (magit-worktree-delete)

	Delete a worktree, defaulting to the worktree at point.
The primary worktree cannot be deleted.

	Z g (magit-worktree-status)

	Show the status for the worktree at point.

If there is no worktree at point, then read one in the minibuffer.
If the worktree at point is the one whose status is already being
displayed in the current buffer, then show it in Dired instead.

Bundle

Also see

Command: magit-bundle
This transient prefix command binds several suffix commands for
running git bundle subcommands and displays them in a temporary
buffer until a suffix is invoked.

Common Commands

Command: magit-switch-to-repository-buffer
Command: magit-switch-to-repository-buffer-other-window
Command: magit-switch-to-repository-buffer-other-frame
Command: magit-display-repository-buffer
These commands read any existing Magit buffer that belongs to the
current repository from the user and then switch to the selected
buffer (without refreshing it).

The last variant uses magit-display-buffer to do so and thus
respects magit-display-buffer-function.

These are some of the commands that can be used in all buffers whose
major-modes derive from magit-mode. There are other common commands
beside the ones below, but these didn’t fit well anywhere else.

	C-w (magit-copy-section-value)

	This command saves the value of the current section to the
kill-ring, and, provided that the current section is a commit,
branch, or tag section, it also pushes the (referenced) revision to
the magit-revision-stack.

When the current section is a branch or a tag, and a prefix argument
is used, then it saves the revision at its tip to the kill-ring
instead of the reference name.

When the region is active, this command saves that to the
kill-ring, like kill-ring-save would, instead of behaving as
described above. If a prefix argument is used and the region is
within a hunk, then it strips the diff marker column and keeps
only either the added or removed lines, depending on the sign of
the prefix argument.

	M-w (magit-copy-buffer-revision)

	This command saves the revision being displayed in the current buffer
to the kill-ring and also pushes it to the magit-revision-stack. It
is mainly intended for use in magit-revision-mode buffers, the only
buffers where it is always unambiguous exactly which revision should
be saved.

Most other Magit buffers usually show more than one revision, in
some way or another, so this command has to select one of them, and
that choice might not always be the one you think would have been
the best pick.

Outside of Magit M-w and C-w are usually bound to kill-ring-save and
kill-region, and these commands would also be useful in Magit buffers.
Therefore when the region is active, then both of these commands
behave like kill-ring-save instead of as described above.

Wip Modes

Git keeps committed changes around long enough for users to recover
changes they have accidentally deleted. It does so by not garbage
collecting any committed but no longer referenced objects for a
certain period of time, by default 30 days.

But Git does not keep track of uncommitted changes in the working tree
and not even the index (the staging area). Because Magit makes it so
convenient to modify uncommitted changes, it also makes it easy to
shoot yourself in the foot in the process.

For that reason Magit provides a global mode that saves tracked files
to work-in-progress references after or before certain actions. (At
present untracked files are never saved and for technical reasons
nothing is saved before the first commit has been created).

Two separate work-in-progress references are used to track the state
of the index and of the working tree: refs/wip/index/<branchref> and
refs/wip/wtree/<branchref>, where <branchref> is the full ref of the
current branch, e.g. refs/heads/master. When the HEAD is detached
then HEAD is used in place of <branchref>.

Checking out another branch (or detaching HEAD) causes the use of
different wip refs for subsequent changes.

User Option: magit-wip-mode
When this mode is enabled, then uncommitted changes are committed
to dedicated work-in-progress refs whenever appropriate (i.e. when
dataloss would be a possibility otherwise).

Setting this variable directly does not take effect; either use the
Custom interface to do so or call the respective mode function.

For historic reasons this mode is implemented on top of four other
magit-wip-* modes, which can also be used individually, if you want
finer control over when the wip refs are updated; but that is
discouraged. See Legacy Wip Modes.

To view the log for a branch and its wip refs use the commands
magit-wip-log and magit-wip-log-current. You should use --graph when
using these commands.

Command: magit-wip-log
This command shows the log for a branch and its wip refs.
With a negative prefix argument only the worktree wip ref is shown.

The absolute numeric value of the prefix argument controls how many
"branches" of each wip ref are shown. This is only relevant if the
value of magit-wip-merge-branch is nil.

Command: magit-wip-log-current
This command shows the log for the current branch and its wip refs.
With a negative prefix argument only the worktree wip ref is shown.

The absolute numeric value of the prefix argument controls how many
"branches" of each wip ref are shown. This is only relevant if the
value of magit-wip-merge-branch is nil.

	X w (magit-reset-worktree)

	This command resets the working tree to some commit read from the
user and defaulting to the commit at point, while keeping the HEAD
and index as-is.

This can be used to restore files to the state committed to a wip
ref. Note that this will discard any unstaged changes that might
have existed before invoking this command (but of course only after
committing that to the working tree wip ref).

Note that even if you enable magit-wip-mode this won’t give you
perfect protection. The most likely scenario for losing changes
despite the use of magit-wip-mode is making a change outside Emacs and
then destroying it also outside Emacs. In some such a scenario,
Magit, being an Emacs package, didn’t get the opportunity to keep you
from shooting yourself in the foot.

When you are unsure whether Magit did commit a change to the wip refs,
then you can explicitly request that all changes to all tracked files
are being committed.

	M-x magit-wip-commit

	This command commits all changes to all tracked files to the index
and working tree work-in-progress refs. Like the modes described above,
it does not commit untracked files, but it does check all tracked
files for changes. Use this command when you suspect that the modes
might have overlooked a change made outside Emacs/Magit.

User Option: magit-wip-namespace
The namespace used for work-in-progress refs. It has to end with
a slash. The wip refs are named <namespace>index/<branchref> and
<namespace>wtree/<branchref>. When snapshots are created while
the HEAD is detached then HEAD is used in place of <branchref>.

User Option: magit-wip-mode-lighter
Mode-line lighter for magit-wip--mode.

Wip Graph

User Option: magit-wip-merge-branch
This option controls whether the current branch is merged into the
wip refs after a new commit was created on the branch.

If non-nil and the current branch has new commits, then it is
merged into the wip ref before creating a new wip commit. This
makes it easier to inspect wip history and the wip commits are
never garbage collected.

If nil and the current branch has new commits, then the wip ref
is reset to the tip of the branch before creating a new wip
commit. With this setting wip commits are eventually garbage
collected.

When magit-wip-merge-branch is t, then the history looks like this:

 ----*--*--*--* refs/wip/index/refs/heads/master
 / / /
A-----B-----C refs/heads/master

When magit-wip-merge-branch is nil, then creating a commit on the real
branch and then making a change causes the wip refs to be recreated to
fork from the new commit. But the old commits on the wip refs are not
lost. They are still available from the reflog. To make it easier to
see when the fork point of a wip ref was changed, an additional commit
with the message "restart autosaving" is created on it (xxO commits
below are such boundary commits).

Starting with

 BI0---BI1 refs/wip/index/refs/heads/master
 /
A---B refs/heads/master
 \
 BW0---BW1 refs/wip/wtree/refs/heads/master

and committing the staged changes and editing and saving a file would
result in

 BI0---BI1 refs/wip/index/refs/heads/master
 /
A---B---C refs/heads/master
 \ \
 \ CW0---CW1 refs/wip/wtree/refs/heads/master
 \
 BW0---BW1 refs/wip/wtree/refs/heads/master@{2}

The fork-point of the index wip ref is not changed until some change
is being staged. Likewise just checking out a branch or creating a
commit does not change the fork-point of the working tree wip ref. The
fork-points are not adjusted until there actually is a change that
should be committed to the respective wip ref.

Legacy Wip Modes

It is recommended that you use the mode magit-wip-mode (which see) and
ignore the existence of the following modes, which are preserved for
historic reasons.

Setting the following variables directly does not take effect; either
use the Custom interface to do so or call the respective mode
functions.

User Option: magit-wip-after-save-mode
When this mode is enabled, then saving a buffer that visits a file
tracked in a Git repository causes its current state to be committed
to the working tree wip ref for the current branch.

User Option: magit-wip-after-apply-mode
When this mode is enabled, then applying (i.e. staging, unstaging,
discarding, reversing, and regularly applying) a change to a file
tracked in a Git repository causes its current state to be committed
to the index and/or working tree wip refs for the current branch.

If you only ever edit files using Emacs and only ever interact with
Git using Magit, then the above two modes should be enough to protect
each and every change from accidental loss. In practice nobody does
that. Two additional modes exists that do commit to the wip refs
before making changes that could cause the loss of earlier changes.

User Option: magit-wip-before-change-mode
When this mode is enabled, then certain commands commit the existing
changes to the files they are about to make changes to.

User Option: magit-wip-initial-backup-mode
When this mode is enabled, then the current version of a file is
committed to the worktree wip ref before the buffer visiting that
file is saved for the first time since the buffer was created.

This backs up the same version of the file that backup-buffer would
save. While backup-buffer uses a backup file, this mode uses the
same worktree wip ref as used by the other Magit Wip modes. Like
backup-buffer, it only does this once; unless you kill the buffer
and visit the file again only one backup will be created per Emacs
session.

This mode ignores the variables that affect backup-buffer and can be
used along-side that function, which is recommended because it only
backs up files that are tracked in a Git repository.

User Option: magit-wip-after-save-local-mode-lighter
Mode-line lighter for magit-wip-after-save-local-mode.

User Option: magit-wip-after-apply-mode-lighter
Mode-line lighter for magit-wip-after-apply-mode.

User Option: magit-wip-before-change-mode-lighter
Mode-line lighter for magit-wip-before-change-mode.

User Option: magit-wip-initial-backup-mode-lighter
Mode-line lighter for magit-wip-initial-backup-mode.

Commands for Buffers Visiting Files

Magit defines a few global key bindings unless the user sets
magit-define-global-key-bindings to nil. This includes binding C-c
M-g to magit-file-dispatch. C-c g would be a much better binding
but the C-c <letter> namespace is reserved for users, meaning that
packages are not allowed to use it. If you want to use C-c g, then
you have to add that binding yourself. Also see Default Bindings
and .

If you want a better binding, you have to add it yourself:

(global-set-key (kbd "C-c g") 'magit-file-dispatch)

The key bindings shown below assume that you have not improved the
binding for magit-file-dispatch.

	C-c M-g (magit-file-dispatch)

	This transient prefix command binds the following suffix commands
and displays them in a temporary buffer until a suffix is invoked.

When invoked in a buffer that does not visit a file, then it falls
back to regular magit-dispatch.

	C-c M-g s (magit-stage-file)

	Stage all changes to the file being visited in the current buffer.

	C-c M-g u (magit-unstage-file)

	Unstage all changes to the file being visited in the current buffer.

	C-c M-g c (magit-commit)

	This transient prefix command binds the following suffix commands
along with the appropriate infix arguments and displays them in a
temporary buffer until a suffix is invoked. See Initiating a Commit.

	C-c M-g D (magit-diff)

	This transient prefix command binds several diff suffix commands and
infix arguments and displays them in a temporary buffer until a
suffix is invoked. See Diffing.

This is the same command that d is bound to in Magit buffers.
If this command is invoked from a file-visiting buffer, then the
initial value of the option (--) that limits the diff to certain
file(s) is set to the visited file.

	C-c M-g d (magit-diff-buffer-file)

	This command shows the diff for the file of blob that the current
buffer visits.

User Option: magit-diff-buffer-file-locked
This option controls whether magit-diff-buffer-file uses a dedicated
buffer. See Modes and Buffers.

	C-c M-g L (magit-log)

	This transient prefix command binds several log suffix commands and
infix arguments and displays them in a temporary buffer until a
suffix is invoked. See Logging.

This is the same command that l is bound to in Magit buffers.
If this command is invoked from a file-visiting buffer, then the
initial value of the option (--) that limits the log to certain
file(s) is set to the visited file.

	C-c M-g l (magit-log-buffer-file)

	This command shows the log for the file of blob that the current
buffer visits. Renames are followed when a prefix argument is used
or when --follow is an active log argument. When the region is
active, the log is restricted to the selected line range.

	C-c M-g t (magit-log-trace-definition)

	This command shows the log for the definition at point.

User Option: magit-log-buffer-file-locked
This option controls whether magit-log-buffer-file uses a dedicated
buffer. See Modes and Buffers.

	C-c M-g B (magit-blame)

	This transient prefix command binds all blaming suffix commands
along with the appropriate infix arguments and displays them in a
temporary buffer until a suffix is invoked.

For more information about this and the following commands also see
Blaming.

In addition to the magit-blame sub-transient, the dispatch transient
also binds several blaming suffix commands directly. See Blaming for
information about those commands and bindings.

	C-c M-g e (magit-edit-line-commit)

	This command makes the commit editable that added the current line.

With a prefix argument it makes the commit editable that removes the
line, if any. The commit is determined using git blame and made
editable using git rebase --interactive if it is reachable from
HEAD, or by checking out the commit (or a branch that points at it)
otherwise.

	C-c M-g p (magit-blob-previous)

	Visit the previous blob which modified the current file.

There are a few additional commands that operate on a single file but
are not enabled in the file transient command by default:

Command: magit-file-rename
This command renames a file read from the user.

Command: magit-file-delete
This command deletes a file read from the user.

Command: magit-file-untrack
This command untracks a file read from the user.

Command: magit-file-checkout
This command updates a file in the working tree and index to the
contents from a revision. Both the revision and file are read
from the user.

To enable them invoke the transient (C-c M-g), enter "edit mode" (C-x
l), set the "transient level" (C-x l again), enter 5, and leave edit
mode (C-g). Also see .

Minor Mode for Buffers Visiting Blobs

The magit-blob-mode enables certain Magit features in blob-visiting
buffers. Such buffers can be created using magit-find-file and some
of the commands mentioned below, which also take care of turning on
this minor mode. Currently this mode only establishes a few key
bindings, but this might be extended.

	p (magit-blob-previous)

	Visit the previous blob which modified the current file.

	n (magit-blob-next)

	Visit the next blob which modified the current file.

	q (magit-kill-this-buffer)

	Kill the current buffer.

Chapter 9. Customizing

Both Git and Emacs are highly customizable. Magit is both a Git
porcelain as well as an Emacs package, so it makes sense to customize
it using both Git variables as well as Emacs options. However this
flexibility doesn’t come without problems, including but not limited
to the following.

	Some Git variables automatically have an effect in Magit without
requiring any explicit support. Sometimes that is desirable - in
other cases, it breaks Magit.

When a certain Git setting breaks Magit but you want to keep using
that setting on the command line, then that can be accomplished by
overriding the value for Magit only by appending something like
("-c" "some.variable=compatible-value") to
magit-git-global-arguments.

	Certain settings like fetch.prune=true are respected by Magit
commands (because they simply call the respective Git command) but
their value is not reflected in the respective transient buffers.
In this case the --prune argument in magit-fetch might be active or
inactive, but that doesn’t keep the Git variable from being honored
by the suffix commands anyway. So pruning might happen despite the
--prune arguments being displayed in a way that seems to indicate
that no pruning will happen.

I intend to address these and similar issues in a future release.

Per-Repository Configuration

Magit can be configured on a per-repository level using both Git
variables as well as Emacs options.

To set a Git variable for one repository only, simply set it in
/path/to/repo/.git/config instead of $HOME/.gitconfig or
/etc/gitconfig. See

Similarly, Emacs options can be set for one repository only by editing
/path/to/repo/.dir-locals.el. See .
For example to disable automatic refreshes of file-visiting buffers in
just one huge repository use this:

	/path/to/huge/repo/.dir-locals.el

((nil . ((magit-refresh-buffers . nil))))

It might only be costly to insert certain information into Magit
buffers for repositories that are exceptionally large, in which case
you can disable the respective section inserters just for that
repository:

	/path/to/tag/invested/repo/.dir-locals.el

((magit-status-mode
 . ((eval . (magit-disable-section-inserter 'magit-insert-tags-header)))))

Function: magit-disable-section-inserter fn
This function disables the section inserter FN in the current
repository. It is only intended for use in .dir-locals.el and
.dir-locals-2.el.

If you want to apply the same settings to several, but not all,
repositories then keeping the repository-local config files in sync
would quickly become annoying. To avoid that you can create config
files for certain classes of repositories (e.g. "huge repositories")
and then include those files in the per-repository config files.
For example:

	/path/to/huge/repo/.git/config

[include]
 path = /path/to/huge-gitconfig

	/path/to/huge-gitconfig

[status]
 showUntrackedFiles = no

	$HOME/.emacs.d/init.el

(dir-locals-set-class-variables 'huge-git-repository
 '((nil . ((magit-refresh-buffers . nil)))))

(dir-locals-set-directory-class
 "/path/to/huge/repo/" 'huge-git-repository)

Essential Settings

The next two sections list and discuss several variables that many
users might want to customize, for safety and/or performance reasons.

Safety

This section discusses various variables that you might want to
change (or not change) for safety reasons.

Git keeps committed changes around long enough for users to recover
changes they have accidentally been deleted. It does not do the same
for uncommitted changes in the working tree and not even the index
(the staging area). Because Magit makes it so easy to modify
uncommitted changes, it also makes it easy to shoot yourself in the
foot in the process. For that reason Magit provides three global
modes that save tracked files to work-in-progress references after or
before certain actions. See Wip Modes.

These modes are not enabled by default because of performance
concerns. Instead a lot of potentially destructive commands require
confirmation every time they are used. In many cases this can be
disabled by adding a symbol to magit-no-confirm (see Completion and Confirmation). If you enable the various wip modes then you should
add safe-with-wip to this list.

Similarly it isn’t necessary to require confirmation before moving a
file to the system trash - if you trashed a file by mistake then you
can recover it from there. Option magit-delete-by-moving-to-trash
controls whether the system trash is used, which is the case by default.
Nevertheless, trash isn’t a member of magit-no-confirm - you
might want to change that.

By default buffers visiting files are automatically reverted when the
visited file changes on disk. This isn’t as risky as it might seem,
but to make an informed decision you should see Risk of Reverting Automatically.

Performance

After Magit has run git for side-effects, it also refreshes the
current Magit buffer and the respective status buffer. This is
necessary because otherwise outdated information might be displayed
without the user noticing. Magit buffers are updated by recreating
their content from scratch, which makes updating simpler and less
error-prone, but also more costly. Keeping it simple and just
re-creating everything from scratch is an old design decision and
departing from that will require major refactoring.

I plan to do that in time for the next major release. I also intend
to create logs and diffs asynchronously, which should also help a lot
but also requires major refactoring.

Meanwhile you can tell Magit to only automatically refresh the current
Magit buffer, but not the status buffer. If you do that, then the
status buffer is only refreshed automatically if it is the
current buffer.

(setq magit-refresh-status-buffer nil)

You should also check whether any third-party packages have added
anything to magit-refresh-buffer-hook, magit-status-refresh-hook,
magit-pre-refresh-hook, and magit-post-refresh-hook. If so, then
check whether those additions impact performance significantly.

Magit can be told to refresh buffers verbosely using M-x
magit-toggle-verbose-refresh. Enabling this helps figuring out which
sections are bottlenecks. The additional output can be found in the
Messages buffer.

Magit also reverts buffers for visited files located inside the
current repository when the visited file changes on disk. That is
implemented on top of auto-revert-mode from the built-in library
autorevert. To figure out whether that impacts performance, check
whether performance is significantly worse, when many buffers exist
and/or when some buffers visit files using TRAMP. If so, then this
should help.

(setq auto-revert-buffer-list-filter
 'magit-auto-revert-repository-buffer-p)

For alternative approaches see Automatic Reverting of File-Visiting Buffers.

If you have enabled any features that are disabled by default, then
you should check whether they impact performance significantly. It’s
likely that they were not enabled by default because it is known that
they reduce performance at least in large repositories.

If performance is only slow inside certain unusually large
repositories, then you might want to disable certain features on a
per-repository or per-repository-class basis only. See
Per-Repository Configuration. For example it takes a long time to
determine the next and current tag in repository with exceptional
numbers of tags. It would therefore be a good idea to disable
magit-insert-tags-headers, as explained at the mentioned node.

Log Performance
When showing logs, Magit limits the number of commits initially shown
in the hope that this avoids unnecessary work. When using --graph is
used, then this unfortunately does not have the desired effect for
large histories. Junio, Git’s maintainer, said on the git mailing
list (http://www.spinics.net/lists/git/msg232230.html): "--graph wants
to compute the whole history and the max-count only affects the output
phase after --graph does its computation".

In other words, it’s not that Git is slow at outputting the
differences, or that Magit is slow at parsing the output - the problem
is that Git first goes outside and has a smoke.

We actually work around this issue by limiting the number of commits
not only by using -<N> but by also using a range. But unfortunately
that’s not always possible.

When more than a few thousand commits are shown, then the use of
--graph can slow things down.

Using --color --graph is even slower. Magit uses code that is part of
Emacs to turn control characters into faces. That code is pretty slow
and this is quite noticeable when showing a log with many branches and
merges. For that reason --color is not enabled by default anymore.
Consider leaving it at that.

Diff Performance
If diffs are slow, then consider turning off some optional diff
features by setting all or some of the following variables to nil:
magit-diff-highlight-indentation, magit-diff-highlight-trailing,
magit-diff-paint-whitespace, magit-diff-highlight-hunk-body, and
magit-diff-refine-hunk.

When showing a commit instead of some arbitrary diff, then some
additional information is displayed. Calculating this information
can be quite expensive given certain circumstances. If looking at
a commit using magit-revision-mode takes considerably more time than
looking at the same commit in magit-diff-mode, then consider setting
magit-revision-insert-related-refs to nil.

When you are often confronted with diffs that contain deleted files,
then you might want to enable the --irreversible-delete argument. If
you do that then diffs still show that a file was deleted but without
also showing the complete deleted content of the file. This argument
is not available by default, see . Once you have done that you should enable it and save that
setting, see . You should do this in both
the diff (d) and the diff refresh (D) transient popups.

Refs Buffer Performance
When refreshing the "references buffer" is slow, then that’s usually
because several hundred refs are being displayed. The best way to
address that is to display fewer refs, obviously.

If you are not, or only mildly, interested in seeing the list of tags,
then start by not displaying them:

(remove-hook 'magit-refs-sections-hook 'magit-insert-tags)

Then you should also make sure that the listed remote branches
actually all exist. You can do so by pruning branches which no longer
exist using f-pa.

Committing Performance
When you initiate a commit, then Magit by default automatically shows
a diff of the changes you are about to commit. For large commits this
can take a long time, which is especially distracting when you are
committing large amounts of generated data which you don’t actually
intend to inspect before committing. This behavior can be turned off
using:

(remove-hook 'server-switch-hook 'magit-commit-diff)

Then you can type C-c C-d to show the diff when you actually want to
see it, but only then. Alternatively you can leave the hook alone and
just type C-g in those cases when it takes too long to generate the
diff. If you do that, then you will end up with a broken diff buffer,
but doing it this way has the advantage that you usually get to see
the diff, which is useful because it increases the odds that you spot
potential issues.

Microsoft Windows Performance

In order to update the status buffer, git has to be run a few dozen
times. That is problematic on Microsoft Windows, because that
operating system is exceptionally slow at starting processes. Sadly
this is an issue that can only be fixed by Microsoft itself, and they
don’t appear to be particularly interested in doing so.

Beside the subprocess issue, there are also other Windows-specific
performance issues. Some of these have workarounds. The
maintainers of "Git for Windows" try to improve performance on Windows.
Always use the latest release in order to benefit from the latest
performance tweaks. Magit too tries to work around some
Windows-specific issues.

According to some sources, setting the following Git variables can also
help.

git config --global core.preloadindex true # default since v2.1
git config --global core.fscache true # default since v2.8
git config --global gc.auto 256

You should also check whether an anti-virus program is affecting
performance.

MacOS Performance

Before Emacs 26.1 child processes were created using fork on macOS.
That needlessly copied GUI resources, which is expensive. The result
was that forking took about 30 times as long on Darwin than on Linux,
and because Magit starts many git processes that made quite a
difference.

So make sure that you are using at least Emacs 26.1, in which case the
faster vfork will be used. (The creation of child processes still
takes about twice as long on Darwin compared to Linux.) See [2]
for more information.

Default Bindings

User Option: magit-define-global-key-bindings
This option controls whether some Magit commands are automatically
bound in the global keymap even before Magit is used for the first
time in the current session.

If this variable is non-nil, which it is by default, then the
following bindings may be added to the global keymap.

	C-x g

	magit-status

	C-x M-g

	magit-dispatch

	C-c M-g

	magit-file-dispatch

These bindings may be added when after-init-hook is run.
Each binding is added if and only if at that time no other key
is bound to the same command and no other command is bound to
the same key. In other words we try to avoid adding bindings
that are unnecessary, as well as bindings that conflict with
other bindings.

Adding the above bindings is delayed until after-init-hook
is called to allow users to set the variable anywhere in their
init file (without having to make sure to do so before magit
is loaded or autoloaded) and to increase the likelihood that
all the potentially conflicting user bindings have already
been added.

To set this variable use either setq or the Custom interface.
Do not use the function customize-set-variable because doing
that would cause Magit to be loaded immediately when that form
is evaluated (this differs from custom-set-variables, which
doesn’t load the libraries that define the customized variables).

Setting this variable to nil has no effect if that is done after
the key bindings have already been added.

We recommend that you bind C-c g instead of C-c M-g to
magit-file-dispatch. The former is a much better binding
but the C-c <letter> namespace is strictly reserved for
users; preventing Magit from using it by default.

(global-set-key (kbd "C-c g") 'magit-file-dispatch)

Also see Commands for Buffers Visiting Files and .

[2] https://lists.gnu.org/archive/html/bug-gnu-emacs/2017-04/msg00201.html

Chapter 10. Plumbing

The following sections describe how to use several of Magit’s core
abstractions to extend Magit itself or implement a separate extension.

A few of the low-level features used by Magit have been factored out
into separate libraries/packages, so that they can be used by other
packages, without having to depend on Magit. See for
information about with-editor. transient doesn’t have a manual yet.

If you are trying to find an unused key that you can bind to a
command provided by your own Magit extension, then checkout
https://github.com/magit/magit/wiki/Plugin-Dispatch-Key-Registry.

Calling Git

Magit provides many specialized functions for calling Git. All of
these functions are defined in either magit-git.el or magit-process.el
and have one of the prefixes magit-run-, magit-call-, magit-start-,
or magit-git- (which is also used for other things).

All of these functions accept an indefinite number of arguments, which
are strings that specify command line arguments for Git (or in some
cases an arbitrary executable). These arguments are flattened before
being passed on to the executable; so instead of strings they can also
be lists of strings and arguments that are nil are silently dropped.
Some of these functions also require a single mandatory argument
before these command line arguments.

Roughly speaking, these functions run Git either to get some value or
for side-effects. The functions that return a value are useful to
collect the information necessary to populate a Magit buffer, while
the others are used to implement Magit commands.

The functions in the value-only group always run synchronously, and
they never trigger a refresh. The function in the side-effect group
can be further divided into subgroups depending on whether they run
Git synchronously or asynchronously, and depending on whether they
trigger a refresh when the executable has finished.

Getting a Value from Git

These functions run Git in order to get a value, an exit
status, or output. Of course you could also use them to run Git
commands that have side-effects, but that should be avoided.

Function: magit-git-exit-code &rest args
Executes git with ARGS and returns its exit code.

Function: magit-git-success &rest args
Executes git with ARGS and returns t if the exit code is 0, nil
otherwise.

Function: magit-git-failure &rest args
Executes git with ARGS and returns t if the exit code is 1, nil
otherwise.

Function: magit-git-true &rest args
Executes git with ARGS and returns t if the first line printed by
git is the string "true", nil otherwise.

Function: magit-git-false &rest args
Executes git with ARGS and returns t if the first line printed by
git is the string "false", nil otherwise.

Function: magit-git-insert &rest args
Executes git with ARGS and inserts its output at point.

Function: magit-git-string &rest args
Executes git with ARGS and returns the first line of its output. If
there is no output or if it begins with a newline character, then
this returns nil.

Function: magit-git-lines &rest args
Executes git with ARGS and returns its output as a list of lines.
Empty lines anywhere in the output are omitted.

Function: magit-git-items &rest args
Executes git with ARGS and returns its null-separated output as a
list. Empty items anywhere in the output are omitted.

If the value of option magit-git-debug is non-nil and git exits with
a non-zero exit status, then warn about that in the echo area and
add a section containing git’s standard error in the current
repository’s process buffer.

Function: magit-process-git destination &rest args
Calls Git synchronously in a separate process, returning its exit
code. DESTINATION specifies how to handle the output, like for
call-process, except that file handlers are supported. Enables
Cygwin’s "noglob" option during the call and ensures unix eol
conversion.

Function: magit-process-file process &optional infile buffer display &rest args
Processes files synchronously in a separate process. Identical to
process-file but temporarily enables Cygwin’s "noglob" option during
the call and ensures unix eol conversion.

If an error occurs when using one of the above functions, then that
is usually due to a bug, i.e. using an argument which is not
actually supported. Such errors are usually not reported, but when
they occur we need to be able to debug them.

User Option: magit-git-debug
Whether to report errors that occur when using magit-git-insert,
magit-git-string, magit-git-lines, or magit-git-items. This does
not actually raise an error. Instead a message is shown in the echo
area, and git’s standard error is insert into a new section in the
current repository’s process buffer.

Function: magit-git-str &rest args
This is a variant of magit-git-string that ignores the option
magit-git-debug. It is mainly intended to be used while handling
errors in functions that do respect that option. Using such a
function while handing an error could cause yet another error and
therefore lead to an infinite recursion. You probably won’t ever
need to use this function.

Calling Git for Effect

These functions are used to run git to produce some effect. Most
Magit commands that actually run git do so by using such a function.

Because we do not need to consume git’s output when using these
functions, their output is instead logged into a per-repository
buffer, which can be shown using $ from a Magit buffer or M-x
magit-process elsewhere.

These functions can have an effect in two distinct ways. Firstly,
running git may change something, i.e. create or push a new commit.
Secondly, that change may require that Magit buffers are refreshed to
reflect the changed state of the repository. But refreshing isn’t
always desirable, so only some of these functions do perform such a
refresh after git has returned.

Sometimes it is useful to run git asynchronously. For example, when
the user has just initiated a push, then there is no reason to make
her wait until that has completed. In other cases it makes sense to
wait for git to complete before letting the user do something else.
For example after staging a change it is useful to wait until after
the refresh because that also automatically moves to the next change.

Function: magit-call-git &rest args
Calls git synchronously with ARGS.

Function: magit-call-process program &rest args
Calls PROGRAM synchronously with ARGS.

Function: magit-run-git &rest args
Calls git synchronously with ARGS and then refreshes.

Function: magit-run-git-with-input &rest args
Calls git synchronously with ARGS and sends it the content of the
current buffer on standard input.

If the current buffer’s default-directory is on a remote
filesystem, this function actually runs git asynchronously. But
then it waits for the process to return, so the function itself is
synchronous.

Function: magit-git &rest args
Calls git synchronously with ARGS for side-effects only. This
function does not refresh the buffer.

Function: magit-git-wash washer &rest args
Execute Git with ARGS, inserting washed output at point. Actually
first insert the raw output at point. If there is no output call
magit-cancel-section. Otherwise temporarily narrow the buffer to
the inserted text, move to its beginning, and then call function
WASHER with ARGS as its sole argument.

And now for the asynchronous variants.

Function: magit-run-git-async &rest args
Start Git, prepare for refresh, and return the process object.
ARGS is flattened and then used as arguments to Git.

Display the command line arguments in the echo area.

After Git returns some buffers are refreshed: the buffer that was
current when this function was called (if it is a Magit buffer and
still alive), as well as the respective Magit status buffer.
Unmodified buffers visiting files that are tracked in the current
repository are reverted if magit-revert-buffers is non-nil.

Function: magit-run-git-with-editor &rest args
Export GIT_EDITOR and start Git. Also prepare for refresh and
return the process object. ARGS is flattened and then used as
arguments to Git.

Display the command line arguments in the echo area.

After Git returns some buffers are refreshed: the buffer that was
current when this function was called (if it is a Magit buffer and
still alive), as well as the respective Magit status buffer.

Function: magit-start-git input &rest args
Start Git, prepare for refresh, and return the process object.

If INPUT is non-nil, it has to be a buffer or the name of an
existing buffer. The buffer content becomes the processes
standard input.

Option magit-git-executable specifies the Git executable and option
magit-git-global-arguments specifies constant arguments. The
remaining arguments ARGS specify arguments to Git. They are
flattened before use.

After Git returns, some buffers are refreshed: the buffer that was
current when this function was called (if it is a Magit buffer and
still alive), as well as the respective Magit status buffer.
Unmodified buffers visiting files that are tracked in the current
repository are reverted if magit-revert-buffers is non-nil.

Function: magit-start-process &rest args
Start PROGRAM, prepare for refresh, and return the process object.

If optional argument INPUT is non-nil, it has to be a buffer or
the name of an existing buffer. The buffer content becomes the
processes standard input.

The process is started using start-file-process and then setup to
use the sentinel magit-process-sentinel and the filter
magit-process-filter. Information required by these functions is
stored in the process object. When this function returns the
process has not started to run yet so it is possible to override the
sentinel and filter.

After the process returns, magit-process-sentinel refreshes the
buffer that was current when magit-start-process was called (if it
is a Magit buffer and still alive), as well as the respective Magit
status buffer. Unmodified buffers visiting files that are tracked
in the current repository are reverted if magit-revert-buffers is
non-nil.

Variable: magit-this-process
The child process which is about to start. This can be used to
change the filter and sentinel.

Variable: magit-process-raise-error
When this is non-nil, then magit-process-sentinel raises an error if
git exits with a non-zero exit status. For debugging purposes.

Section Plumbing

Creating Sections

Macro: magit-insert-section &rest args
Insert a section at point.

TYPE is the section type, a symbol. Many commands that act on the
current section behave differently depending on that type. Also if
a variable magit-TYPE-section-map exists, then use that as the
text-property keymap of all text belonging to the section (but this
may be overwritten in subsections). TYPE can also have the form
(eval FORM) in which case FORM is evaluated at runtime.

Optional VALUE is the value of the section, usually a string that is
required when acting on the section.

When optional HIDE is non-nil collapse the section body by default,
i.e. when first creating the section, but not when refreshing the
buffer. Otherwise, expand it by default. This can be overwritten using
magit-section-set-visibility-hook. When a section is recreated
during a refresh, then the visibility of predecessor is inherited
and HIDE is ignored (but the hook is still honored).

BODY is any number of forms that actually insert the section’s
heading and body. Optional NAME, if specified, has to be a symbol,
which is then bound to the struct of the section being inserted.

Before BODY is evaluated the start of the section object is set to
the value of point and after BODY was evaluated its end is set to
the new value of point; BODY is responsible for moving point
forward.

If it turns out inside BODY that the section is empty, then
magit-cancel-section can be used to abort and remove all traces of
the partially inserted section. This can happen when creating a
section by washing Git’s output and Git didn’t actually output
anything this time around.

Function: magit-insert-heading &rest args
Insert the heading for the section currently being inserted.

This function should only be used inside magit-insert-section.

When called without any arguments, then just set the content slot of
the object representing the section being inserted to a marker at
point. The section should only contain a single line when this
function is used like this.

When called with arguments ARGS, which have to be strings, then
insert those strings at point. The section should not contain any
text before this happens and afterwards it should again only contain
a single line. If the face property is set anywhere inside any of
these strings, then insert all of them unchanged. Otherwise use the
magit-section-heading face for all inserted text.

The content property of the section struct is the end of the heading
(which lasts from start to content) and the beginning of the body
(which lasts from content to end). If the value of content is nil,
then the section has no heading and its body cannot be collapsed.
If a section does have a heading then its height must be exactly one
line, including a trailing newline character. This isn’t enforced;
you are responsible for getting it right. The only exception is
that this function does insert a newline character if necessary.

Function: magit-cancel-section
Cancel the section currently being inserted. This exits the
innermost call to magit-insert-section and removes all traces of
what has already happened inside that call.

Function: magit-define-section-jumper sym title &optional value
Define an interactive function to go to section SYM. TITLE is the
displayed title of the section.

Section Selection

Function: magit-current-section
Return the section at point.

Function: magit-region-sections &optional condition multiple
Return a list of the selected sections.

When the region is active and constitutes a valid section
selection, then return a list of all selected sections. This is
the case when the region begins in the heading of a section and
ends in the heading of the same section or in that of a sibling
section. If optional MULTIPLE is non-nil, then the region cannot
begin and end in the same section.

When the selection is not valid, then return nil. In this case,
most commands that can act on the selected sections will instead
act on the section at point.

When the region looks like it would in any other buffer then
the selection is invalid. When the selection is valid then the
region uses the magit-section-highlight face. This does not
apply to diffs where things get a bit more complicated, but even
here if the region looks like it usually does, then that’s not
a valid selection as far as this function is concerned.

If optional CONDITION is non-nil, then the selection not only
has to be valid; all selected sections additionally have to match
CONDITION, or nil is returned. See magit-section-match for the
forms CONDITION can take.

Function: magit-region-values &optional condition multiple
Return a list of the values of the selected sections.

Return the values that themselves would be returned by
magit-region-sections (which see).

Matching Sections

	M-x magit-describe-section-briefly

	Show information about the section at point. This command is
intended for debugging purposes.

Function: magit-section-ident section
Return an unique identifier for SECTION. The return value has the
form ((TYPE . VALUE)...).

Function: magit-get-section ident &optional root
Return the section identified by IDENT. IDENT has to be a list as
returned by magit-section-ident.

Function: magit-section-match condition &optional section
Return t if SECTION matches CONDITION.
SECTION defaults to the section at point. If SECTION is not
specified and there also is no section at point, then return
nil.

CONDITION can take the following forms:

	(CONDITION...)

matches if any of the CONDITIONs matches.

	[CLASS...]

matches if the section’s class is the same
as the first CLASS or a subclass of that;
the section’s parent class matches the
second CLASS; and so on.

	[* CLASS...]

matches sections that match [CLASS...] and
also recursively all their child sections.

	CLASS

matches if the section’s class is the same
as CLASS or a subclass of that; regardless
of the classes of the parent sections.

Each CLASS should be a class symbol, identifying a class that
derives from magit-section. For backward compatibility CLASS
can also be a "type symbol". A section matches such a symbol
if the value of its type slot is eq. If a type symbol has
an entry in magit--section-type-alist, then a section also
matches that type if its class is a subclass of the class that
corresponds to the type as per that alist.

Note that it is not necessary to specify the complete section
lineage as printed by magit-describe-section-briefly, unless
of course you want to be that precise.

Function: magit-section-value-if condition &optional section
If the section at point matches CONDITION, then return its value.

If optional SECTION is non-nil then test whether that matches
instead. If there is no section at point and SECTION is nil,
then return nil. If the section does not match, then return
nil.

See magit-section-match for the forms CONDITION can take.

Function: magit-section-case &rest clauses
Choose among clauses on the type of the section at point.

Each clause looks like (CONDITION BODY…). The type of the
section is compared against each CONDITION; the BODY forms of the
first match are evaluated sequentially and the value of the last
form is returned. Inside BODY the symbol it is bound to the
section at point. If no clause succeeds or if there is no
section at point return nil.

See magit-section-match for the forms CONDITION can take.
Additionally a CONDITION of t is allowed in the final clause and
matches if no other CONDITION match, even if there is no section at
point.

Variable: magit-root-section
The root section in the current buffer. All other sections are
descendants of this section. The value of this variable is set by
magit-insert-section and you should never modify it.

For diff related sections a few additional tools exist.

Function: magit-diff-type &optional section
Return the diff type of SECTION.

The returned type is one of the symbols staged, unstaged, committed,
or undefined. This type serves a similar purpose as the general
type common to all sections (which is stored in the type slot of the
corresponding magit-section struct) but takes additional information
into account. When the SECTION isn’t related to diffs and the
buffer containing it also isn’t a diff-only buffer, then return nil.

Currently the type can also be one of tracked and untracked, but
these values are not handled explicitly in every place they should
be. A possible fix could be to just return nil here.

The section has to be a diff or hunk section, or a section whose
children are of type diff. If optional SECTION is nil, return the
diff type for the current section. In buffers whose major mode is
magit-diff-mode SECTION is ignored and the type is determined using
other means. In magit-revision-mode buffers the type is always
committed.

Function: magit-diff-scope &optional section strict
Return the diff scope of SECTION or the selected section(s).

A diff’s "scope" describes what part of a diff is selected, it is a
symbol, one of region, hunk, hunks, file, files, or list. Do not
confuse this with the diff "type", as returned by magit-diff-type.

If optional SECTION is non-nil, then return the scope of that,
ignoring the sections selected by the region. Otherwise return the
scope of the current section, or if the region is active and selects
a valid group of diff related sections, the type of these sections,
i.e. hunks or files. If SECTION (or if the current section that
is nil) is a hunk section and the region starts and ends inside
the body of a that section, then the type is region.

If optional STRICT is non-nil then return nil if the diff type of
the section at point is untracked or the section at point is not
actually a diff but a diffstat section.

Refreshing Buffers

All commands that create a new Magit buffer or change what is being
displayed in an existing buffer do so by calling magit-mode-setup.
Among other things, that function sets the buffer local values of
default-directory (to the top-level of the repository),
magit-refresh-function, and magit-refresh-args.

Buffers are refreshed by calling the function that is the local value
of magit-refresh-function (a function named magit-*-refresh-buffer,
where * may be something like diff) with the value of
magit-refresh-args as arguments.

Macro: magit-mode-setup buffer switch-func mode refresh-func &optional refresh-args
This function displays and selects BUFFER, turns on MODE, and
refreshes a first time.

This function displays and optionally selects BUFFER by calling
magit-mode-display-buffer with BUFFER, MODE and SWITCH-FUNC as
arguments. Then it sets the local value of magit-refresh-function
to REFRESH-FUNC and that of magit-refresh-args to REFRESH-ARGS.
Finally it creates the buffer content by calling REFRESH-FUNC with
REFRESH-ARGS as arguments.

All arguments are evaluated before switching to BUFFER.

Function: magit-mode-display-buffer buffer mode &optional switch-function
This function display BUFFER in some window and select it. BUFFER
may be a buffer or a string, the name of a buffer. The buffer is
returned.

Unless BUFFER is already displayed in the selected frame, store the
previous window configuration as a buffer local value, so that it
can later be restored by magit-mode-bury-buffer.

The buffer is displayed and selected using SWITCH-FUNCTION. If that
is nil then pop-to-buffer is used if the current buffer’s major mode
derives from magit-mode. Otherwise switch-to-buffer is used.

Variable: magit-refresh-function
The value of this buffer-local variable is the function used to
refresh the current buffer. It is called with magit-refresh-args as
arguments.

Variable: magit-refresh-args
The list of arguments used by magit-refresh-function to refresh the
current buffer. magit-refresh-function is called with these
arguments.

The value is usually set using magit-mode-setup, but in some cases
it’s also useful to provide commands that can change the value. For
example, the magit-diff-refresh transient can be used to change any
of the arguments used to display the diff, without having to specify
again which differences should be shown, but magit-diff-more-context,
magit-diff-less-context and magit-diff-default-context change just
the -U<N> argument. In both case this is done by changing the value
of this variable and then calling this magit-refresh-function.

Conventions

Also see Completion and Confirmation.

Theming Faces

The default theme uses blue for local branches, green for remote
branches, and goldenrod (brownish yellow) for tags. When creating a
new theme, you should probably follow that example. If your theme
already uses other colors, then stick to that.

In older releases these reference faces used to have a background
color and a box around them. The basic default faces no longer do so,
to make Magit buffers much less noisy, and you should follow that
example at least with regards to boxes. (Boxes were used in the past
to work around a conflict between the highlighting overlay and text
property backgrounds. That’s no longer necessary because highlighting no
longer causes other background colors to disappear.) Alternatively
you can keep the background color and/or box, but then have to take
special care to adjust magit-branch-current accordingly. By default
it looks mostly like magit-branch-local, but with a box (by default
the former is the only face that uses a box, exactly so that it sticks
out). If the former also uses a box, then you have to make sure that
it differs in some other way from the latter.

The most difficult faces to theme are those related to diffs,
headings, highlighting, and the region. There are faces that fall
into all four groups - expect to spend some time getting this right.

The region face in the default theme, in both the light and dark
variants, as well as in many other themes, distributed with Emacs or
by third-parties, is very ugly. It is common to use a background
color that really sticks out, which is ugly but if that were the only
problem then it would be acceptable. Unfortunately many themes also
set the foreground color, which ensures that all text within the
region is readable. Without doing that there might be cases where
some foreground color is too close to the region background color to
still be readable. But it also means that text within the region
loses all syntax highlighting.

I consider the work that went into getting the region face right to be
a good indicator for the general quality of a theme. My
recommendation for the region face is this: use a background color
slightly different from the background color of the default face, and
do not set the foreground color at all. So for a light theme you
might use a light (possibly tinted) gray as the background color of
default and a somewhat darker gray for the background of region.
That should usually be enough to not collide with the foreground color
of any other face. But if some other faces also set a light gray as
background color, then you should also make sure it doesn’t collide
with those (in some cases it might be acceptable though).

Magit only uses the region face when the region is "invalid" by its
own definition. In a Magit buffer the region is used to either select
multiple sibling sections, so that commands which support it act on
all of these sections instead of just the current section, or to
select lines within a single hunk section. In all other cases, the
section is considered invalid and Magit won’t act on it. But such
invalid sections happen, either because the user has not moved point
enough yet to make it valid or because she wants to use a non-magit
command to act on the region, e.g. kill-region.

So using the regular region face for invalid sections is a feature. It
tells the user that Magit won’t be able to act on it. It’s acceptable
if that face looks a bit odd and even (but less so) if it collides
with the background colors of section headings and other things that
have a background color.

Magit highlights the current section. If a section has subsections,
then all of them are highlighted. This is done using faces that have
"highlight" in their names. For most sections, magit-section-highlight
is used for both the body and the heading. Like the region face, it
should only set the background color to something similar to that of
default. The highlight background color must be different from both
the region background color and the default background color.

For diff related sections Magit uses various faces to
highlight different parts of the selected section(s). Note that hunk
headings, unlike all other section headings, by default have a
background color, because it is useful to have very visible separators
between hunks. That face magit-diff-hunk-heading, should be different
from both magit-diff-hunk-heading-highlight and
magit-section-highlight, as well as from magit-diff-context and
magit-diff-context-highlight. By default we do that by changing the
foreground color. Changing the background color would lead to
complications, and there are already enough we cannot get around.
(Also note that it is generally a good idea for section headings to
always be bold, but only for sections that have subsections).

When there is a valid region selecting diff-related sibling sections,
i.e. multiple files or hunks, then the bodies of all these sections
use the respective highlight faces, but additionally the headings
instead use one of the faces magit-diff-file-heading-selection or
magit-diff-hunk-heading-selection. These faces have to be different
from the regular highlight variants to provide explicit visual
indication that the region is active.

When theming diff related faces, start by setting the option
magit-diff-refine-hunk to all. You might personally prefer to only
refine the current hunk or not use hunk refinement at all, but some of
the users of your theme want all hunks to be refined, so you have to
cater to that.

(Also turn on magit-diff-highlight-indentation,
magit-diff-highlight-trailing, and magit-diff-paint-whitespace; and
insert some whitespace errors into the code you use for testing.)

For added lines you have to adjust three faces:
magit-diff-added, magit-diff-added-highlight, and
diff-refined-added. Make sure that the latter works well with both
of the former, as well as smerge-other and diff-added. Then do the
same for the removed lines, context lines, lines added by us, and
lines added by them. Also make sure the respective added, removed,
and context faces use approximately the same saturation for both the
highlighted and unhighlighted variants. Also make sure the file and
diff headings work nicely with context lines (e.g. make them look
different). Line faces should set both the foreground and the
background color. For example, for added lines use two different
greens.

It’s best if the foreground color of both the highlighted and the
unhighlighted variants are the same, so you will need to have to find
a color that works well on the highlight and unhighlighted background,
the refine background, and the highlight context background. When
there is an hunk internal region, then the added- and removed-lines
background color is used only within that region. Outside the region
the highlighted context background color is used. This makes it
easier to see what is being staged. With an hunk internal region the
hunk heading is shown using magit-diff-hunk-heading-selection, and so
are the thin lines that are added around the lines that fall within
the region. The background color of that has to be distinct enough
from the various other involved background colors.

Nobody said this would be easy. If your theme restricts itself to a
certain set of colors, then you should make an exception here.
Otherwise it would be impossible to make the diffs look good in each
and every variation. Actually you might want to just stick to the
default definitions for these faces. You have been warned. Also
please note that if you do not get this right, this will in some cases
look to users like bugs in Magit - so please do it right or not at
all.

Appendix A. FAQ

The next two nodes lists frequently asked questions. For a list of
frequently and recently asked questions, i.e. questions that haven’t
made it into the manual yet, see
https://github.com/magit/magit/wiki/FAQ.

Please also use the Debugging Tools.

FAQ - How to …?

How to pronounce Magit?

Either mu[m's] git or magi{c => t} is fine.

The slogan is "It’s Magit! The magical Git client", so it makes sense
to pronounce Magit like magic, while taking into account that C and T
do not sound the same.

The German "Magie" is not pronounced the same as the English "magic",
so if you speak German then you can use the above rational to justify
using the former pronunciation; Mag{ie => it}.

You can also choose to use the former pronunciation just because you
like it better.

Also see https://magit.vc/assets/videos/magic.mp4.
Also see https://emacs.stackexchange.com/questions/13696.

How to show git’s output?

To show the output of recently run git commands, press $ (or, if that
isn’t available, M-x magit-process-buffer). This will show a buffer
containing a section per git invocation; as always press TAB to expand
or collapse them.

By default, git’s output is only inserted into the process buffer if it
is run for side-effects. When the output is consumed in some way,
also inserting it into the process buffer would be too expensive. For
debugging purposes, it’s possible to do so anyway by setting
magit-git-debug to t.

How to install the gitman info manual?

Git’s manpages can be exported as an info manual called gitman.
Magit’s own info manual links to nodes in that manual instead of the
actual manpages because Info doesn’t support linking to manpages.

Unfortunately some distributions do not install the gitman manual by
default and you will have to install a separate documentation package
to get it.

Magit patches Info adding the ability to visit links to the gitman
Info manual by instead viewing the respective manpage. If you prefer
that approach, then set the value of magit-view-git-manual-method to
one of the supported packages man or woman, e.g.:

(setq magit-view-git-manual-method 'man)

How to show diffs for gpg-encrypted files?

Git supports showing diffs for encrypted files, but has to be told to
do so. Since Magit just uses Git to get the diffs, configuring Git
also affects the diffs displayed inside Magit.

git config --global diff.gpg.textconv "gpg --no-tty --decrypt"
echo "*.gpg filter=gpg diff=gpg" > .gitattributes

How does branching and pushing work?

Please see Branching and http://emacsair.me/2016/01/18/magit-2.4

Can Magit be used as ediff-version-control-package?

No, it cannot. For that to work the functions ediff-magit-internal
and ediff-magit-merge-internal would have to be implemented, and they
are not. These two functions are only used by the three commands
ediff-revision, ediff-merge-revisions-with-ancestor, and
ediff-merge-revisions.

These commands only delegate the task of populating buffers with
certain revisions to the "internal" functions. The equally important
task of determining which revisions are to be compared/merged is not
delegated. Instead this is done without any support whatsoever from
the version control package/system - meaning that the user has to
enter the revisions explicitly. Instead of implementing
ediff-magit-internal we provide magit-ediff-compare, which handles
both tasks like it is 2005.

The other commands ediff-merge-revisions and
ediff-merge-revisions-with-ancestor are normally not what you want
when using a modern version control system like Git. Instead of
letting the user resolve only those conflicts which Git could not
resolve on its own, they throw away all work done by Git and then
expect the user to manually merge all conflicts, including those that
had already been resolved. That made sense back in the days when
version control systems couldn’t merge (or so I have been told), but
not anymore. Once in a blue moon you might actually want to see all
conflicts, in which case you can use these commands, which then use
ediff-vc-merge-internal. So we don’t actually have to implement
ediff-magit-merge-internal. Instead we provide the more useful
command magit-ediff-resolve which only shows yet-to-be resolved
conflicts.

Should I disable VC?

If you don’t use VC (the built-in version control interface) then
you might be tempted to disable it, not least because we used to
recommend that you do that.

We no longer recommend that you disable VC. Doing so would break
useful third-party packages (such as diff-hl), which depend on VC
being enabled.

If you choose to disable VC anyway, then you can do so by changing
the value of vc-handled-backends.

FAQ - Issues and Errors

Magit is slow

See Performance.

I changed several thousand files at once and now Magit is unusable

Magit is currently not expected to work under such conditions. It sure
would be nice if it did, and v2.5 will hopefully be a big step into
that direction. But it might take until v3.1 to accomplish fully
satisfactory performance, because that requires some heavy refactoring.

But for now we recommend you use the command line to complete this one
commit. Also see Performance.

I am having problems committing

That likely means that Magit is having problems finding an appropriate
emacsclient executable. See
and .

I am using MS Windows and cannot push with Magit

It’s almost certain that Magit is only incidental to this issue. It
is much more likely that this is a configuration issue, even if you
can push on the command line.

Detailed setup instructions can be found at
https://github.com/magit/magit/wiki/Pushing-with-Magit-from-Windows.

I am using OS X and SOMETHING works in shell, but not in Magit

This usually occurs because Emacs doesn’t have the same environment
variables as your shell. Try installing and configuring
https://github.com/purcell/exec-path-from-shell. By default it
synchronizes $PATH, which helps Magit find the same git as the one you
are using on the shell.

If SOMETHING is "passphrase caching with gpg-agent for commit and/or
tag signing", then you’ll also need to synchronize $GPG_AGENT_INFO.

Expanding a file to show the diff causes it to disappear

This is probably caused by a change of a diff.* Git variable. You
probably set that variable for a reason, and should therefore
only undo that setting in Magit by customizing
magit-git-global-arguments.

Point is wrong in the COMMIT_EDITMSG buffer

Neither Magit nor ‘git-commit‘ fiddle with point in the buffer used to
write commit messages, so something else must be doing it.

You have probably globally enabled a mode which does restore point in
file-visiting buffers. It might be a bit surprising, but when you
write a commit message, then you are actually editing a file.

So you have to figure out which package is doing. saveplace,
pointback, and session are likely candidates. These snippets might
help:

(setq session-name-disable-regexp "\\(?:\\`'\\.git/[A-Z_]+\\'\\)")

(with-eval-after-load 'pointback
 (lambda ()
 (when (or git-commit-mode git-rebase-mode)
 (pointback-mode -1))))

The mode-line information isn’t always up-to-date

Magit is not responsible for the version control information that is
being displayed in the mode-line and looks something like Git-master.
The built-in "Version Control" package, also known as "VC", updates
that information, and can be told to do so more often:

(setq auto-revert-check-vc-info t)

But doing so isn’t good for performance. For more (overly optimistic)
information see .

If you don’t really care about seeing this information in the
mode-line, but just don’t want to see incorrect information,
then consider simply not displaying it in the mode-line:

(setq-default mode-line-format
 (delete '(vc-mode vc-mode) mode-line-format))

A branch and tag sharing the same name breaks SOMETHING

Or more generally, ambiguous refnames break SOMETHING.

Magit assumes that refs are named non-ambiguously across the
"refs/heads/", "refs/tags/", and "refs/remotes/" namespaces (i.e., all
the names remain unique when those prefixes are stripped). We
consider ambiguous refnames unsupported and recommend that you use a
non-ambiguous naming scheme. However, if you do work with a
repository that has ambiguous refnames, please report any issues you
encounter so that we can investigate whether there is a simple fix.

My Git hooks work on the command-line but not inside Magit

When Magit calls git it adds a few global arguments including
--literal-pathspecs and the git process started by Magit then passes
that setting on to other git process it starts itself. It does so by
setting the environment variable GIT_LITERAL_PATHSPECS, not by calling
subprocesses with the --literal-pathspecs argument. You can therefore
override this setting in hook scripts using unset
GIT_LITERAL_PATHSPECS.

git-commit-mode isn’t used when committing from the command-line

The reason for this is that git-commit.el has not been loaded yet
and/or that the server has not been started yet. These things have
always already been taken care of when you commit from Magit because
in order to do so, Magit has to be loaded and doing that involves
loading git-commit and starting the server.

If you want to commit from the command-line, then you have to take
care of these things yourself. Your init.el file should contain:

(require 'git-commit)
(server-mode)

Instead of ‘(require ’git-commit)‘ you may also use:

(load "/path/to/magit-autoloads.el")

You might want to do that because loading git-commit causes large
parts of Magit to be loaded.

There are also some variations of (server-mode) that you might want to
try. Personally I use:

(use-package server
 :config (or (server-running-p) (server-mode)))

Now you can use:

$ emacs&
$ EDITOR=emacsclient git commit

However you cannot use:

$ killall emacs
$ EDITOR="emacsclient --alternate-editor emacs" git commit

This will actually end up using emacs, not emacsclient. If you do
this, then you can still edit the commit message but git-commit-mode
won’t be used and you have to exit emacs to finish the process.

Tautology ahead. If you want to be able to use emacsclient to connect
to a running emacs instance, even though no emacs instance is running,
then you cannot use emacsclient directly.

Instead you have to create a script that does something like this:

Try to use emacsclient (without using --alternate-editor). If that
succeeds, do nothing else. Otherwise start emacs & (and init.el must
call server-start) and try to use emacsclient again.

Point ends up inside invisible text when jumping to a file-visiting buffer

This can happen when you type RET on a hunk to visit the respective
file at the respective position. One solution to this problem is to
use global-reveal-mode. It makes sure that text around point is
always visible. If that is too drastic for your taste, then you may
instead use magit-diff-visit-file-hook to reveal the text, possibly
using reveal-post-command or for Org buffers org-reveal.

I am unable to stage when using Tramp from MS Windows

Magit may be unable to stage (or otherwise apply) individual hunks
when you are connected to remote machine using Tramp and the local
machine uses MS Windows.

There appears to be a problem with process-send-eof in this scenario,
as mentioned at the end of tramp-tests.el. I have contacted the Tramp
maintainer about this. For now this unfortunately means that it just
doesn’t work and we cannot do anything about it. If you have more
information, then please comment on
https://github.com/magit/magit/issues/3624.

I am no longer able to save popup defaults

Magit used to use Magit-Popup to implement the transient popup menus.
Now it used Transient instead, which is Magit-Popup’s successor.

In the older Magit-Popup menus, it was possible to save user settings
(e.g. setting the gpg signing key for commits) by using C-c C-c in the
popup buffer. This would dismiss the popup, but save the settings as
the defaults for future popups.

When switching to Transient menus, this functionality is now available
via C-x C-s instead; the C-x prefix has other options as well when
using Transient, which will be displayed when it is typed. See
https://magit.vc/manual/transient/Saving-Values.html#Saving-Values for
more details.

Chapter B. Debugging Tools

Magit and its dependencies provide a few debugging tools, and we
appreciate it very much if you use those tools before reporting an
issue. Please include all relevant output when reporting an
issue.

	M-x magit-version

	This command shows the currently used versions of Magit, Git, and
Emacs in the echo area. Non-interactively this just returns the
Magit version.

	M-x magit-emacs-Q-command

	This command shows a debugging shell command in the echo area and
adds it to the kill ring. Paste that command into a shell and run
it.

This shell command starts emacs with only magit and its
dependencies loaded. Neither your configuration nor other installed
packages are loaded. This makes it easier to determine whether some
issue lays with Magit or something else.

If you run Magit from its Git repository, then you should be able to
use make emacs-Q instead of the output of this command.

	M-x magit-toggle-verbose-refresh

	This command toggles whether Magit refreshes buffers verbosely.
Enabling this helps figuring out which sections are bottlenecks.
The additional output can be found in the *Messages* buffer.

	M-x magit-debug-git-executable

	This command displays a buffer containing information about the
available and used git executable(s), and can be useful when
investigating exec-path issues.

Also see Git Executable.

	M-x with-editor-debug

	This command displays a buffer containing information about the
available and used emacsclient executable(s), and can be useful
when investigating why Magit (or rather with-editor) cannot find
an appropriate emacsclient executable.

Also see .

Please also see the FAQ.

Appendix C. Keystroke Index

Index

Symbols
	!, Running Git Manually
	! !, Running Git Manually
	! a, Running Git Manually
	! b, Running Git Manually
	! g, Running Git Manually
	! k, Running Git Manually
	! p, Running Git Manually
	! s, Running Git Manually
	! S, Running Git Manually
	$, Viewing Git Output
	+, Log Buffer, Refreshing Diffs
	-, Log Buffer, Refreshing Diffs
	0, Refreshing Diffs
	1, Section Visibility
	2, Section Visibility
	3, Section Visibility
	4, Section Visibility
	:, Running Git Manually
	=, Log Buffer
	^, Section Movement

A
	a, Applying
	A, Cherry Picking
	A A, Cherry Picking
	A a, Cherry Picking
	A d, Cherry Picking
	A h, Cherry Picking
	A n, Cherry Picking
	A s, Cherry Picking
	auto-revert-buffer-list-filter, Automatic Reverting of File-Visiting Buffers
	auto-revert-interval, Automatic Reverting of File-Visiting Buffers
	auto-revert-mode, Automatic Reverting of File-Visiting Buffers
	auto-revert-stop-on-user-input, Automatic Reverting of File-Visiting Buffers
	auto-revert-use-notify, Automatic Reverting of File-Visiting Buffers
	auto-revert-verbose, Automatic Reverting of File-Visiting Buffers

B
	B, Bisecting
	b, Blaming, Branch Commands, Editing Rebase Sequences
	B B, Bisecting
	B b, Bisecting
	b b, Branch Commands
	b C, Branch Commands
	b c, Branch Commands
	B g, Bisecting
	B k, Bisecting
	b k, Branch Commands
	b l, Branch Commands
	B m, Bisecting
	b n, Branch Commands
	B r, Bisecting
	b r, Branch Commands
	B s, Bisecting
	b s, Branch Commands
	b S, Branch Commands
	b x, Branch Commands
	branch.autoSetupMerge, Branch Git Variables
	branch.autoSetupRebase, Branch Git Variables
	branch.NAME.description, Branch Git Variables
	branch.NAME.merge, Branch Git Variables
	branch.NAME.pushRemote, Branch Git Variables
	branch.NAME.rebase, Branch Git Variables
	branch.NAME.remote, Branch Git Variables
	bug-reference-mode, Commit Mode and Hooks

C
	c, Blaming, Initiating a Commit, Editing Rebase Sequences
	C, Cloning Repository
	c a, Initiating a Commit
	c A, Initiating a Commit
	C b, Cloning Repository
	C C, Cloning Repository
	c c, Initiating a Commit
	C d, Cloning Repository
	C e, Cloning Repository
	c e, Initiating a Commit
	c f, Initiating a Commit
	c F, Initiating a Commit
	C m, Cloning Repository
	C s, Cloning Repository
	c s, Initiating a Commit
	c S, Initiating a Commit
	c w, Initiating a Commit
	C-<return>, Visiting Files and Blobs from a Diff
	C-<tab>, Section Visibility
	C-c C-a, Commit Pseudo Headers
	C-c C-b, Log Buffer, Refreshing Diffs
	C-c C-c, Transient Commands, Select from Log, Editing Commit Messages, Editing Rebase Sequences
	C-c C-d, Refreshing Diffs, Editing Commit Messages
	C-c C-e, Commands Available in Diffs
	C-c C-f, Log Buffer, Refreshing Diffs
	C-c C-i, Commit Pseudo Headers
	C-c C-k, Select from Log, Editing Commit Messages, Editing Rebase Sequences
	C-c C-n, Log Buffer
	C-c C-o, Commit Pseudo Headers
	C-c C-p, Commit Pseudo Headers
	C-c C-r, Commit Pseudo Headers
	C-c C-s, Commit Pseudo Headers
	C-c C-t, Commands Available in Diffs, Commit Pseudo Headers
	C-c C-w, Using the Revision Stack
	C-c M-g, Commands for Buffers Visiting Files
	C-c M-g B, Blaming, Commands for Buffers Visiting Files
	C-c M-g b, Blaming
	C-c M-g B b, Blaming
	C-c M-g B e, Blaming
	C-c M-g B f, Blaming
	C-c M-g B r, Blaming
	C-c M-g c, Commands for Buffers Visiting Files
	C-c M-g D, Commands for Buffers Visiting Files
	C-c M-g d, Commands for Buffers Visiting Files
	C-c M-g e, Blaming, Commands for Buffers Visiting Files
	C-c M-g f, Blaming
	C-c M-g L, Commands for Buffers Visiting Files
	C-c M-g l, Commands for Buffers Visiting Files
	C-c M-g p, Commands for Buffers Visiting Files
	C-c M-g r, Blaming
	C-c M-g s, Commands for Buffers Visiting Files
	C-c M-g t, Commands for Buffers Visiting Files
	C-c M-g u, Commands for Buffers Visiting Files
	C-c M-i, Commit Pseudo Headers
	C-c M-s, Editing Commit Messages
	C-w, Common Commands
	C-x g, Status Buffer
	C-x u, Editing Rebase Sequences
	core.notesRef, Notes

D
	d, Diffing
	D, Refreshing Diffs
	d c, Diffing
	d d, Diffing
	D f, Refreshing Diffs
	D F, Refreshing Diffs
	D g, Refreshing Diffs
	d p, Diffing
	d r, Diffing
	D r, Refreshing Diffs
	d s, Diffing
	D s, Refreshing Diffs
	d t, Diffing
	D t, Refreshing Diffs
	d u, Diffing
	d w, Diffing
	D w, Refreshing Diffs
	DEL, Log Buffer, Commands Available in Diffs, Blaming, Editing Rebase Sequences

E
	e, Ediffing, Editing Rebase Sequences
	E, Ediffing
	E c, Ediffing
	E i, Ediffing
	E m, Ediffing
	E r, Ediffing
	E s, Ediffing
	E u, Ediffing
	E w, Ediffing
	E z, Ediffing

F
	f, Editing Rebase Sequences, Fetching
	F, Pulling
	f a, Fetching
	f C, Branch Commands
	F C, Branch Commands
	f e, Fetching
	F e, Pulling
	f m, Fetching
	f o, Fetching
	f p, Fetching
	F p, Pulling
	f r, Fetching
	f u, Fetching
	F u, Pulling
	forward-line, Editing Rebase Sequences

G
	g, Automatic Refreshing of Magit Buffers
	G, Automatic Refreshing of Magit Buffers
	git-commit-ack, Commit Pseudo Headers
	git-commit-cc, Commit Pseudo Headers
	git-commit-check-style-conventions, Commit Message Conventions
	git-commit-fill-column, Commit Message Conventions
	git-commit-finish-query-functions, Commit Message Conventions
	git-commit-insert-pseudo-header, Commit Pseudo Headers
	git-commit-known-pseudo-headers, Commit Pseudo Headers
	git-commit-major-mode, Commit Mode and Hooks
	git-commit-next-message, Editing Commit Messages
	git-commit-prev-message, Editing Commit Messages
	git-commit-propertize-diff, Commit Mode and Hooks
	git-commit-reported, Commit Pseudo Headers
	git-commit-review, Commit Pseudo Headers
	git-commit-save-message, Editing Commit Messages, Commit Mode and Hooks
	git-commit-setup-changelog-support, Commit Mode and Hooks
	git-commit-setup-hook, Commit Mode and Hooks
	git-commit-signoff, Commit Pseudo Headers
	git-commit-style-convention-checks, Commit Message Conventions
	git-commit-suggested, Commit Pseudo Headers
	git-commit-summary-max-length, Commit Message Conventions
	git-commit-test, Commit Pseudo Headers
	git-commit-turn-on-auto-fill, Commit Mode and Hooks
	git-commit-turn-on-flyspell, Commit Mode and Hooks
	git-rebase-auto-advance, Editing Rebase Sequences
	git-rebase-backward-line, Editing Rebase Sequences
	git-rebase-break, Editing Rebase Sequences
	git-rebase-confirm-cancel, Editing Rebase Sequences
	git-rebase-edit, Editing Rebase Sequences
	git-rebase-exec, Editing Rebase Sequences
	git-rebase-fixup, Editing Rebase Sequences
	git-rebase-insert, Editing Rebase Sequences
	git-rebase-kill-line, Editing Rebase Sequences
	git-rebase-label, Editing Rebase Sequences
	git-rebase-merge, Editing Rebase Sequences
	git-rebase-merge-toggle-editmsg, Editing Rebase Sequences
	git-rebase-move-line-down, Editing Rebase Sequences
	git-rebase-move-line-up, Editing Rebase Sequences
	git-rebase-pick, Editing Rebase Sequences
	git-rebase-reset, Editing Rebase Sequences
	git-rebase-reword, Editing Rebase Sequences
	git-rebase-show-commit, Editing Rebase Sequences
	git-rebase-show-instructions, Editing Rebase Sequences
	git-rebase-show-or-scroll-down, Editing Rebase Sequences
	git-rebase-show-or-scroll-up, Editing Rebase Sequences
	git-rebase-squash, Editing Rebase Sequences
	git-rebase-undo, Editing Rebase Sequences
	global-auto-revert-mode, Automatic Reverting of File-Visiting Buffers

H
	H, Section Types and Values

I
	I, Creating Repository
	ido-enter-magit-status, Status Buffer

J
	j, Log Buffer, Commands Available in Diffs

K
	k, Viewing Git Output, Applying, Editing Rebase Sequences, Stashing

L
	l, Logging, Editing Rebase Sequences
	L, Refreshing Logs, Log Buffer, Log Margin
	l a, Logging
	l b, Logging
	L d, Log Margin
	L g, Refreshing Logs
	l h, Logging
	l H, Reflog
	l l, Logging
	l L, Logging
	L L, Log Margin
	L l, Log Margin
	l o, Logging
	l O, Reflog
	l r, Reflog
	L s, Refreshing Logs
	L t, Refreshing Logs
	L w, Refreshing Logs

M
	m, Merging
	M, Remote Commands
	m a, Merging
	M a, Remote Commands
	M C, Remote Commands
	m e, Merging
	m i, Merging
	M k, Remote Commands
	m m, Merging
	m n, Merging
	m p, Merging
	M p, Remote Commands
	M P, Remote Commands
	M r, Remote Commands
	m s, Merging
	M u, Remote Commands
	M-1, Section Visibility
	M-2, Section Visibility
	M-3, Section Visibility
	M-4, Section Visibility
	M-<tab>, Section Visibility
	M-n, Section Movement, Editing Commit Messages, Editing Rebase Sequences
	M-p, Section Movement, Editing Commit Messages, Editing Rebase Sequences
	M-w, Blaming, Common Commands
	magit-add-section-hook, Section Hooks
	magit-after-save-refresh-status, Automatic Refreshing of Magit Buffers
	magit-am, Maildir Patches
	magit-am-abort, Maildir Patches
	magit-am-apply-maildir, Maildir Patches
	magit-am-apply-patches, Maildir Patches
	magit-am-continue, Maildir Patches
	magit-am-skip, Maildir Patches
	magit-apply, Applying
	magit-auto-revert-immediately, Automatic Reverting of File-Visiting Buffers
	magit-auto-revert-mode, Automatic Reverting of File-Visiting Buffers
	magit-auto-revert-tracked-only, Automatic Reverting of File-Visiting Buffers
	magit-bisect, Bisecting
	magit-bisect-bad, Bisecting
	magit-bisect-good, Bisecting
	magit-bisect-mark, Bisecting
	magit-bisect-reset, Bisecting
	magit-bisect-run, Bisecting
	magit-bisect-show-graph, Bisecting
	magit-bisect-skip, Bisecting
	magit-bisect-start, Bisecting
	magit-blame, Blaming, Commands for Buffers Visiting Files
	magit-blame-addition, Blaming
	magit-blame-copy-hash, Blaming
	magit-blame-cycle-style, Blaming
	magit-blame-disable-modes, Blaming
	magit-blame-echo, Blaming
	magit-blame-echo-style, Blaming
	magit-blame-goto-chunk-hook, Blaming
	magit-blame-next-chunk, Blaming
	magit-blame-next-chunk-same-commit, Blaming
	magit-blame-previous-chunk, Blaming
	magit-blame-previous-chunk-same-commit, Blaming
	magit-blame-quit, Blaming
	magit-blame-read-only, Blaming
	magit-blame-removal, Blaming
	magit-blame-reverse, Blaming
	magit-blame-styles, Blaming
	magit-blame-time-format, Blaming
	magit-blob-next, Minor Mode for Buffers Visiting Blobs
	magit-blob-previous, Commands for Buffers Visiting Files, Minor Mode for Buffers Visiting Blobs
	magit-branch, Branch Commands
	magit-branch-adjust-remote-upstream-alist, Branch Commands
	magit-branch-and-checkout, Branch Commands
	magit-branch-checkout, Branch Commands
	magit-branch-configure, Branch Commands
	magit-branch-create, Branch Commands
	magit-branch-delete, Branch Commands
	magit-branch-direct-configure, Branch Commands
	magit-branch-or-checkout, Branch Commands
	magit-branch-orphan, Branch Commands
	magit-branch-prefer-remote-upstream, Branch Commands
	magit-branch-read-upstream-first, Branch Commands
	magit-branch-rename, Branch Commands
	magit-branch-reset, Branch Commands
	magit-branch-shelve, Auxiliary Branch Commands
	magit-branch-spinoff, Branch Commands
	magit-branch-spinout, Branch Commands
	magit-branch-unshelve, Auxiliary Branch Commands
	magit-buffer-name-format, Naming Buffers
	magit-builtin-completing-read, Support for Completion Frameworks
	magit-bundle, Bundle
	magit-bury-buffer-function, Quitting Windows
	magit-call-git, Calling Git for Effect
	magit-call-process, Calling Git for Effect
	magit-cancel-section, Creating Sections
	magit-checkout, Branch Commands
	magit-cherry, Cherries
	magit-cherry-apply, Cherry Picking
	magit-cherry-copy, Cherry Picking
	magit-cherry-donate, Cherry Picking
	magit-cherry-harvest, Cherry Picking
	magit-cherry-margin, Cherries
	magit-cherry-pick, Cherry Picking
	magit-cherry-spinoff, Cherry Picking
	magit-cherry-spinout, Cherry Picking
	magit-clone, Cloning Repository
	magit-clone-always-transient, Cloning Repository
	magit-clone-bare, Cloning Repository
	magit-clone-default-directory, Cloning Repository
	magit-clone-mirror, Cloning Repository
	magit-clone-name-alist, Cloning Repository
	magit-clone-regular, Cloning Repository
	magit-clone-set-remote-head, Cloning Repository
	magit-clone-set-remote.pushDefault, Cloning Repository
	magit-clone-shallow, Cloning Repository
	magit-clone-shallow-exclude, Cloning Repository
	magit-clone-shallow-since, Cloning Repository
	magit-clone-url-format, Cloning Repository
	magit-commit, Initiating a Commit, Commands for Buffers Visiting Files
	magit-commit-amend, Initiating a Commit
	magit-commit-ask-to-stage, Initiating a Commit
	magit-commit-augment, Initiating a Commit
	magit-commit-create, Initiating a Commit
	magit-commit-diff-inhibit-same-window, Initiating a Commit
	magit-commit-extend, Initiating a Commit
	magit-commit-extend-override-date, Initiating a Commit
	magit-commit-fixup, Initiating a Commit
	magit-commit-instant-fixup, Initiating a Commit
	magit-commit-instant-squash, Initiating a Commit
	magit-commit-reword, Initiating a Commit
	magit-commit-reword-override-date, Initiating a Commit
	magit-commit-show-diff, Initiating a Commit
	magit-commit-squash, Initiating a Commit
	magit-commit-squash-confirm, Initiating a Commit
	magit-completing-read, Support for Completion Frameworks
	magit-completing-read-function, Support for Completion Frameworks
	magit-copy-buffer-revision, Common Commands
	magit-copy-section-value, Common Commands
	magit-current-section, Section Selection
	magit-cycle-margin-style, Log Margin
	magit-debug-git-executable, Git Executable, Debugging Tools
	magit-define-global-key-bindings, Default Bindings
	magit-define-section-jumper, Creating Sections
	magit-describe-section, Section Types and Values
	magit-describe-section-briefly, Section Types and Values, Matching Sections
	magit-diff, Diffing, Commands for Buffers Visiting Files
	magit-diff-adjust-tab-width, Diff Options
	magit-diff-buffer-file, Commands for Buffers Visiting Files
	magit-diff-buffer-file-locked, Commands for Buffers Visiting Files
	magit-diff-default-context, Refreshing Diffs
	magit-diff-dwim, Diffing
	magit-diff-edit-hunk-commit, Commands Available in Diffs
	magit-diff-extra-stat-arguments, Diff Options
	magit-diff-flip-revs, Refreshing Diffs
	magit-diff-hide-trailing-cr-characters, Diff Options
	magit-diff-highlight-hunk-region-functions, Diff Options
	magit-diff-highlight-indentation, Diff Options
	magit-diff-highlight-trailing, Diff Options
	magit-diff-less-context, Refreshing Diffs
	magit-diff-more-context, Refreshing Diffs
	magit-diff-paint-whitespace, Diff Options
	magit-diff-paint-whitespace-lines, Diff Options
	magit-diff-paths, Diffing
	magit-diff-range, Diffing
	magit-diff-refine-hunk, Diff Options
	magit-diff-refine-ignore-whitespace, Diff Options
	magit-diff-refresh, Refreshing Diffs
	magit-diff-save-default-arguments, Refreshing Diffs
	magit-diff-scope, Matching Sections
	magit-diff-set-default-arguments, Refreshing Diffs
	magit-diff-show-or-scroll-down, Log Buffer, Blaming
	magit-diff-show-or-scroll-up, Log Buffer, Blaming
	magit-diff-staged, Diffing
	magit-diff-switch-range-type, Refreshing Diffs
	magit-diff-toggle-file-filter, Refreshing Diffs
	magit-diff-toggle-refine-hunk, Refreshing Diffs
	magit-diff-trace-definition, Commands Available in Diffs
	magit-diff-type, Matching Sections
	magit-diff-unmarked-lines-keep-foreground, Diff Options
	magit-diff-unstaged, Diffing
	magit-diff-visit-file, Visiting Files and Blobs from a Diff
	magit-diff-visit-file-other-frame, Visiting Files and Blobs from a Diff
	magit-diff-visit-file-other-window, Visiting Files and Blobs from a Diff
	magit-diff-visit-file-worktree, Visiting Files and Blobs from a Diff
	magit-diff-visit-previous-blob, Visiting Files and Blobs from a Diff
	magit-diff-visit-worktree-file-other-frame, Visiting Files and Blobs from a Diff
	magit-diff-visit-worktree-file-other-window, Visiting Files and Blobs from a Diff
	magit-diff-while-committing, Refreshing Diffs, Editing Commit Messages
	magit-diff-working-tree, Diffing
	magit-direct-use-buffer-arguments, Transient Arguments and Buffer Variables
	magit-disable-section-inserter, Per-Repository Configuration
	magit-discard, Applying
	magit-dispatch, Transient Commands
	magit-display-buffer, Switching Buffers
	magit-display-buffer-fullcolumn-most-v1, Switching Buffers
	magit-display-buffer-fullframe-status-topleft-v1, Switching Buffers
	magit-display-buffer-fullframe-status-v1, Switching Buffers
	magit-display-buffer-function, Switching Buffers
	magit-display-buffer-noselect, Switching Buffers
	magit-display-buffer-same-window-except-diff-v1, Switching Buffers
	magit-display-buffer-traditional, Switching Buffers
	magit-display-repository-buffer, Common Commands
	magit-dwim-selection, Completion and Confirmation
	magit-ediff, Ediffing
	magit-ediff-compare, Ediffing
	magit-ediff-dwim, Ediffing
	magit-ediff-dwim-show-on-hunks, Ediffing
	magit-ediff-quit-hook, Ediffing
	magit-ediff-resolve, Ediffing
	magit-ediff-show-commit, Ediffing
	magit-ediff-show-staged, Ediffing
	magit-ediff-show-stash, Ediffing
	magit-ediff-show-stash-with-index, Ediffing
	magit-ediff-show-unstaged, Ediffing
	magit-ediff-show-working-tree, Ediffing
	magit-ediff-stage, Ediffing
	magit-edit-line-commit, Commands for Buffers Visiting Files
	magit-emacs-Q-command, Debugging Tools
	magit-fetch, Fetching
	magit-fetch-all, Fetching
	magit-fetch-branch, Fetching
	magit-fetch-from-pushremote, Fetching
	magit-fetch-from-upstream, Fetching
	magit-fetch-modules, Submodule Transient
	magit-fetch-other, Fetching
	magit-fetch-refspec, Fetching
	magit-file-checkout, Resetting, Commands for Buffers Visiting Files
	magit-file-delete, Commands for Buffers Visiting Files
	magit-file-dispatch, Commands for Buffers Visiting Files
	magit-file-rename, Commands for Buffers Visiting Files
	magit-file-untrack, Commands for Buffers Visiting Files
	magit-find-file, General-Purpose Visit Commands
	magit-find-file-other-frame, General-Purpose Visit Commands
	magit-find-file-other-window, General-Purpose Visit Commands
	magit-generate-buffer-name-default-function, Naming Buffers
	magit-generate-buffer-name-function, Naming Buffers
	magit-get-section, Matching Sections
	magit-git, Calling Git for Effect
	magit-git-command, Running Git Manually
	magit-git-command-topdir, Running Git Manually
	magit-git-debug, Viewing Git Output, Getting a Value from Git
	magit-git-executable, Git Executable
	magit-git-exit-code, Getting a Value from Git
	magit-git-failure, Getting a Value from Git
	magit-git-false, Getting a Value from Git
	magit-git-global-arguments, Global Git Arguments
	magit-git-insert, Getting a Value from Git
	magit-git-items, Getting a Value from Git
	magit-git-lines, Getting a Value from Git
	magit-git-str, Getting a Value from Git
	magit-git-string, Getting a Value from Git
	magit-git-success, Getting a Value from Git
	magit-git-true, Getting a Value from Git
	magit-git-wash, Calling Git for Effect
	magit-go-backward, Log Buffer, Refreshing Diffs
	magit-go-forward, Log Buffer, Refreshing Diffs
	magit-hunk-set-window-start, Section Movement
	magit-ido-completing-read, Support for Completion Frameworks
	magit-init, Creating Repository
	magit-insert-am-sequence, Status Sections
	magit-insert-assumed-unchanged-files, Status Sections
	magit-insert-bisect-log, Status Sections
	magit-insert-bisect-output, Status Sections
	magit-insert-bisect-rest, Status Sections
	magit-insert-diff-filter-header, Status Header Sections
	magit-insert-error-header, Status Header Sections
	magit-insert-head-branch-header, Status Header Sections
	magit-insert-heading, Creating Sections
	magit-insert-ignored-files, Status Sections
	magit-insert-local-branches, References Sections
	magit-insert-merge-log, Status Sections
	magit-insert-modules, Status Module Sections
	magit-insert-modules-overview, Status Module Sections
	magit-insert-modules-unpulled-from-pushremote, Status Module Sections
	magit-insert-modules-unpulled-from-upstream, Status Module Sections
	magit-insert-modules-unpushed-to-pushremote, Status Module Sections
	magit-insert-modules-unpushed-to-upstream, Status Module Sections
	magit-insert-push-branch-header, Status Header Sections
	magit-insert-rebase-sequence, Status Sections
	magit-insert-recent-commits, Status Sections
	magit-insert-remote-branches, References Sections
	magit-insert-remote-header, Status Header Sections
	magit-insert-repo-header, Status Header Sections
	magit-insert-section, Creating Sections
	magit-insert-sequencer-sequence, Status Sections
	magit-insert-skip-worktree-files, Status Sections
	magit-insert-staged-changes, Status Sections
	magit-insert-stashes, Status Sections
	magit-insert-status-headers, Status Header Sections
	magit-insert-tags, References Sections
	magit-insert-tags-header, Status Header Sections
	magit-insert-tracked-files, Status Sections
	magit-insert-unpulled-cherries, Status Sections
	magit-insert-unpulled-from-pushremote, Status Sections
	magit-insert-unpulled-from-upstream, Status Sections
	magit-insert-unpulled-or-recent-commits, Status Sections
	magit-insert-unpushed-cherries, Status Sections
	magit-insert-unpushed-to-pushremote, Status Sections
	magit-insert-unpushed-to-upstream, Status Sections
	magit-insert-unstaged-changes, Status Sections
	magit-insert-untracked-files, Status Sections
	magit-insert-upstream-branch-header, Status Header Sections
	magit-insert-user-header, Status Header Sections
	magit-jump-to-diffstat-or-diff, Commands Available in Diffs
	magit-keep-region-overlay, The Selection
	magit-kill-this-buffer, Minor Mode for Buffers Visiting Blobs
	magit-list-refs-sortby, Additional Completion Options
	magit-list-repositories, Repository List
	magit-list-submodules, Listing Submodules, Submodule Transient
	magit-log, Logging, Commands for Buffers Visiting Files
	magit-log-all, Logging
	magit-log-all-branches, Logging
	magit-log-auto-more, Log Buffer
	magit-log-branches, Logging
	magit-log-buffer-file, Commands for Buffers Visiting Files
	magit-log-buffer-file-locked, Commands for Buffers Visiting Files
	magit-log-bury-buffer, Log Buffer
	magit-log-current, Logging
	magit-log-double-commit-limit, Log Buffer
	magit-log-half-commit-limit, Log Buffer
	magit-log-head, Logging
	magit-log-margin, Log Margin
	magit-log-margin-show-committer-date, Log Margin
	magit-log-maybe-show-more-commits, Section Movement
	magit-log-maybe-update-blob-buffer, Section Movement
	magit-log-maybe-update-revision-buffer, Section Movement
	magit-log-move-to-parent, Log Buffer
	magit-log-move-to-revision, Log Buffer
	magit-log-other, Logging
	magit-log-refresh, Refreshing Logs, Log Buffer
	magit-log-save-default-arguments, Refreshing Logs
	magit-log-section-commit-count, Status Sections
	magit-log-select-margin, Select from Log
	magit-log-select-pick, Select from Log
	magit-log-select-quit, Select from Log
	magit-log-set-default-arguments, Refreshing Logs
	magit-log-show-refname-after-summary, Log Buffer
	magit-log-toggle-commit-limit, Log Buffer
	magit-log-trace-definition, Commands for Buffers Visiting Files
	magit-log-trace-definition-function, Commands Available in Diffs
	magit-margin-settings, Log Margin
	magit-maybe-set-dedicated, Switching Buffers
	magit-merge, Merging
	magit-merge-abort, Merging
	magit-merge-absorb, Merging
	magit-merge-editmsg, Merging
	magit-merge-into, Merging
	magit-merge-nocommit, Merging
	magit-merge-plain, Merging
	magit-merge-preview, Merging
	magit-merge-squash, Merging
	magit-mode-bury-buffer, Quitting Windows
	magit-mode-display-buffer, Refreshing Buffers
	magit-mode-quit-window, Quitting Windows
	magit-mode-setup, Refreshing Buffers
	magit-module-sections-hook, Status Module Sections
	magit-module-sections-nested, Status Module Sections
	magit-no-confirm, Action Confirmation
	magit-notes, Notes
	magit-notes-edit, Notes
	magit-notes-merge, Notes
	magit-notes-merge-abort, Notes
	magit-notes-merge-commit, Notes
	magit-notes-prune, Notes
	magit-notes-remove, Notes
	magit-patch, Plain Patches
	magit-patch-apply, Plain Patches, Maildir Patches
	magit-patch-create, Plain Patches
	magit-patch-save, Plain Patches
	magit-pop-revision-stack, Using the Revision Stack
	magit-pop-revision-stack-format, Using the Revision Stack
	magit-post-commit-hook, Initiating a Commit
	magit-post-display-buffer-hook, Switching Buffers
	magit-pre-display-buffer-hook, Switching Buffers
	magit-prefer-remote-upstream, Branch Git Variables
	magit-prefix-use-buffer-arguments, Transient Arguments and Buffer Variables
	magit-process, Viewing Git Output
	magit-process-extreme-logging, Viewing Git Output
	magit-process-file, Getting a Value from Git
	magit-process-git, Getting a Value from Git
	magit-process-kill, Viewing Git Output
	magit-process-raise-error, Calling Git for Effect
	magit-pull, Pulling
	magit-pull-branch, Pulling
	magit-pull-from-pushremote, Pulling
	magit-pull-from-upstream, Pulling
	magit-pull-or-fetch, Fetching
	magit-push, Pushing
	magit-push-current, Pushing
	magit-push-current-to-pushremote, Pushing
	magit-push-current-to-upstream, Pushing
	magit-push-implicitly, Pushing
	magit-push-matching, Pushing
	magit-push-other, Pushing
	magit-push-refspecs, Pushing
	magit-push-tag, Pushing
	magit-push-tags, Pushing
	magit-push-to-remote, Pushing
	magit-rebase, Rebasing
	magit-rebase-abort, Rebasing
	magit-rebase-autosquash, Rebasing
	magit-rebase-branch, Rebasing
	magit-rebase-continue, Rebasing
	magit-rebase-edit, Rebasing
	magit-rebase-edit-commit, Rebasing
	magit-rebase-interactive, Rebasing
	magit-rebase-onto-pushremote, Rebasing
	magit-rebase-onto-upstream, Rebasing
	magit-rebase-remove-commit, Rebasing
	magit-rebase-reword-commit, Rebasing
	magit-rebase-skip, Rebasing
	magit-rebase-subset, Rebasing
	magit-reflog-current, Reflog
	magit-reflog-head, Reflog
	magit-reflog-margin, Reflog
	magit-reflog-other, Reflog
	magit-refresh, Automatic Refreshing of Magit Buffers
	magit-refresh-all, Automatic Refreshing of Magit Buffers
	magit-refresh-args, Refreshing Buffers
	magit-refresh-buffer-hook, Automatic Refreshing of Magit Buffers
	magit-refresh-function, Refreshing Buffers
	magit-refresh-status-buffer, Automatic Refreshing of Magit Buffers
	magit-refs-filter-alist, References Buffer
	magit-refs-focus-column-width, References Buffer
	magit-refs-margin, References Buffer
	magit-refs-margin-for-tags, References Buffer
	magit-refs-pad-commit-counts, References Buffer
	magit-refs-primary-column-width, References Buffer
	magit-refs-sections-hook, References Sections
	magit-refs-set-show-commit-count, References Buffer
	magit-refs-show-commit-count, References Buffer
	magit-refs-show-remote-prefix, References Buffer
	magit-region-sections, Section Selection
	magit-region-values, Section Selection
	magit-remote, Remote Commands
	magit-remote-add, Remote Commands
	magit-remote-add-set-remote.pushDefault, Remote Commands
	magit-remote-configure, Remote Commands
	magit-remote-direct-configure, Remote Commands
	magit-remote-git-executable, Git Executable
	magit-remote-prune, Remote Commands
	magit-remote-prune-refspecs, Remote Commands
	magit-remote-remove, Remote Commands
	magit-remote-rename, Remote Commands
	magit-remote-set-url, Remote Commands
	magit-repolist-column-branch, Repository List
	magit-repolist-column-branches, Repository List
	magit-repolist-column-flag, Repository List
	magit-repolist-column-ident, Repository List
	magit-repolist-column-path, Repository List
	magit-repolist-column-stashes, Repository List
	magit-repolist-column-unpulled-from-pushremote, Repository List
	magit-repolist-column-unpulled-from-upstream, Repository List
	magit-repolist-column-unpushed-to-pushremote, Repository List
	magit-repolist-column-unpushed-to-upstream, Repository List
	magit-repolist-column-upstream, Repository List
	magit-repolist-column-version, Repository List
	magit-repolist-columns, Repository List
	magit-repository-directories, Status Buffer
	magit-reset-hard, Resetting
	magit-reset-index, Staging and Unstaging, Resetting
	magit-reset-keep, Resetting
	magit-reset-mixed, Resetting
	magit-reset-quickly, Resetting
	magit-reset-soft, Resetting
	magit-reset-worktree, Resetting, Wip Modes
	magit-restore-window-configuration, Quitting Windows
	magit-reverse, Applying
	magit-reverse-in-index, Staging and Unstaging
	magit-revert, Reverting
	magit-revert-and-commit, Reverting
	magit-revert-no-commit, Reverting
	magit-revision-filter-files-on-follow, Revision Buffer
	magit-revision-insert-related-refs, Revision Buffer
	magit-revision-show-gravatars, Revision Buffer
	magit-revision-use-hash-sections, Revision Buffer
	magit-root-section, Matching Sections
	magit-run, Running Git Manually
	magit-run-git, Calling Git for Effect
	magit-run-git-async, Calling Git for Effect
	magit-run-git-gui, Running Git Manually
	magit-run-git-with-editor, Calling Git for Effect
	magit-run-git-with-input, Calling Git for Effect
	magit-run-gitk, Running Git Manually
	magit-run-gitk-all, Running Git Manually
	magit-run-gitk-branches, Running Git Manually
	magit-save-repository-buffers, Automatic Saving of File-Visiting Buffers
	magit-save-window-configuration, Switching Buffers
	magit-section-backward, Section Movement
	magit-section-backward-siblings, Section Movement
	magit-section-cache-visibility, Section Visibility
	magit-section-case, Matching Sections
	magit-section-cycle, Section Visibility
	magit-section-cycle-diffs, Section Visibility
	magit-section-cycle-global, Section Visibility
	magit-section-forward, Section Movement
	magit-section-forward-siblings, Section Movement
	magit-section-hide, Section Visibility
	magit-section-hide-children, Section Visibility
	magit-section-ident, Matching Sections
	magit-section-initial-visibility-alist, Section Visibility
	magit-section-match, Matching Sections
	magit-section-movement-hook, Section Movement
	magit-section-set-visibility-hook, Section Visibility
	magit-section-set-window-start, Section Movement
	magit-section-show, Section Visibility
	magit-section-show-child-count, Section Options
	magit-section-show-children, Section Visibility
	magit-section-show-headings, Section Visibility
	magit-section-show-level-1, Section Visibility
	magit-section-show-level-1-all, Section Visibility
	magit-section-show-level-2, Section Visibility
	magit-section-show-level-2-all, Section Visibility
	magit-section-show-level-3, Section Visibility
	magit-section-show-level-3-all, Section Visibility
	magit-section-show-level-4, Section Visibility
	magit-section-show-level-4-all, Section Visibility
	magit-section-toggle, Section Visibility
	magit-section-toggle-children, Section Visibility
	magit-section-up, Section Movement
	magit-section-value-if, Matching Sections
	magit-section-visibility-indicator, Section Visibility
	magit-sequence-abort, Cherry Picking, Reverting
	magit-sequence-continue, Cherry Picking, Reverting
	magit-sequence-skip, Cherry Picking, Reverting
	magit-shell-command, Running Git Manually
	magit-shell-command-topdir, Running Git Manually
	magit-shell-command-verbose-prompt, Running Git Manually
	magit-show-commit, Diffing, Blaming
	magit-show-refs, References Buffer
	magit-show-refs-current, References Buffer
	magit-show-refs-head, References Buffer
	magit-show-refs-other, References Buffer
	magit-snapshot-both, Stashing
	magit-snapshot-index, Stashing
	magit-snapshot-worktree, Stashing
	magit-stage, Staging and Unstaging
	magit-stage-file, Staging from File-Visiting Buffers, Commands for Buffers Visiting Files
	magit-stage-modified, Staging and Unstaging
	magit-start-git, Calling Git for Effect
	magit-start-process, Calling Git for Effect
	magit-stash, Stashing
	magit-stash-apply, Stashing
	magit-stash-both, Stashing
	magit-stash-branch, Stashing
	magit-stash-branch-here, Stashing
	magit-stash-clear, Stashing
	magit-stash-drop, Stashing
	magit-stash-format-patch, Stashing
	magit-stash-index, Stashing
	magit-stash-keep-index, Stashing
	magit-stash-list, Stashing
	magit-stash-pop, Stashing
	magit-stash-show, Diffing, Stashing
	magit-stash-worktree, Stashing
	magit-stashes-margin, Stashing
	magit-stashes-maybe-update-stash-buffer, Section Movement
	magit-status, Status Buffer
	magit-status-headers-hook, Status Header Sections
	magit-status-margin, Status Options
	magit-status-maybe-update-blob-buffer, Section Movement
	magit-status-maybe-update-revision-buffer, Section Movement
	magit-status-maybe-update-stash-buffer, Section Movement
	magit-status-quick, Status Buffer
	magit-status-refresh-hook, Status Options
	magit-status-sections-hook, Status Sections
	magit-submodule, Submodule Transient
	magit-submodule-add, Submodule Transient
	magit-submodule-fetch, Fetching
	magit-submodule-list-columns, Listing Submodules
	magit-submodule-populate, Submodule Transient
	magit-submodule-register, Submodule Transient
	magit-submodule-synchronize, Submodule Transient
	magit-submodule-unpopulate, Submodule Transient
	magit-submodule-update, Submodule Transient
	magit-subtree, Subtree
	magit-subtree-add, Subtree
	magit-subtree-add-commit, Subtree
	magit-subtree-export, Subtree
	magit-subtree-import, Subtree
	magit-subtree-merge, Subtree
	magit-subtree-pull, Subtree
	magit-subtree-push, Subtree
	magit-subtree-split, Subtree
	magit-switch-to-repository-buffer, Common Commands
	magit-switch-to-repository-buffer-other-frame, Common Commands
	magit-switch-to-repository-buffer-other-window, Common Commands
	magit-tag, Tagging
	magit-tag-create, Tagging
	magit-tag-delete, Tagging
	magit-tag-prune, Tagging
	magit-tag-release, Tagging
	magit-this-process, Calling Git for Effect
	magit-toggle-buffer-lock, Modes and Buffers
	magit-toggle-margin, Refreshing Logs, Log Margin
	magit-toggle-margin-details, Log Margin
	magit-toggle-verbose-refresh, Debugging Tools
	magit-uniquify-buffer-names, Naming Buffers
	magit-unstage, Staging and Unstaging
	magit-unstage-all, Staging and Unstaging
	magit-unstage-committed, Staging and Unstaging
	magit-unstage-file, Staging from File-Visiting Buffers, Commands for Buffers Visiting Files
	magit-update-other-window-delay, Section Movement
	magit-version, Git Executable, Debugging Tools
	magit-visit-ref, References Buffer
	magit-visit-ref-behavior, References Buffer
	magit-wip-after-apply-mode, Legacy Wip Modes
	magit-wip-after-apply-mode-lighter, Legacy Wip Modes
	magit-wip-after-save-local-mode-lighter, Legacy Wip Modes
	magit-wip-after-save-mode, Legacy Wip Modes
	magit-wip-before-change-mode, Legacy Wip Modes
	magit-wip-before-change-mode-lighter, Legacy Wip Modes
	magit-wip-commit, Wip Modes
	magit-wip-initial-backup-mode, Legacy Wip Modes
	magit-wip-initial-backup-mode-lighter, Legacy Wip Modes
	magit-wip-log, Wip Modes
	magit-wip-log-current, Wip Modes
	magit-wip-merge-branch, Wip Graph
	magit-wip-mode, Wip Modes
	magit-wip-mode-lighter, Wip Modes
	magit-wip-namespace, Wip Modes
	magit-worktree, Worktree
	magit-worktree-branch, Worktree
	magit-worktree-checkout, Worktree
	magit-worktree-delete, Worktree
	magit-worktree-move, Worktree
	magit-worktree-status, Worktree
	MM, Editing Rebase Sequences
	Mt, Editing Rebase Sequences

N
	n, Section Movement, Blaming, Editing Rebase Sequences, Minor Mode for Buffers Visiting Blobs
	N, Blaming
	notes.displayRef, Notes

O
	o, Submodule Transient
	O, Subtree
	o a, Submodule Transient
	o d, Submodule Transient
	O e, Subtree
	O e p, Subtree
	O e s, Subtree
	o f, Submodule Transient
	O i, Subtree
	O i a, Subtree
	O i c, Subtree
	O i f, Subtree
	O i m, Subtree
	o l, Submodule Transient
	o p, Submodule Transient
	o r, Submodule Transient
	o s, Submodule Transient
	o u, Submodule Transient

P
	p, Section Movement, Blaming, Editing Rebase Sequences, Minor Mode for Buffers Visiting Blobs
	P, Blaming, Pushing
	P C, Branch Commands
	P e, Pushing
	P m, Pushing
	P o, Pushing
	P p, Pushing
	P r, Pushing
	P t, Pushing
	P T, Pushing
	P u, Pushing
	pull.rebase, Branch Git Variables

Q
	q, Quitting Windows, Log Buffer, Blaming, Minor Mode for Buffers Visiting Blobs

R
	r, Rebasing, Editing Rebase Sequences
	r a, Rebasing
	r e, Rebasing
	r f, Rebasing
	r i, Rebasing
	r k, Rebasing
	r m, Rebasing
	r p, Rebasing
	r r, Rebasing
	r s, Rebasing
	r u, Rebasing
	r w, Rebasing
	remote.NAME.fetch, Remote Git Variables
	remote.NAME.push, Remote Git Variables
	remote.NAME.pushurl, Remote Git Variables
	remote.NAME.tagOpts, Remote Git Variables
	remote.NAME.url, Remote Git Variables
	remote.pushDefault, Branch Git Variables
	RET, References Buffer, Visiting Files and Blobs from a Diff, Blaming, Editing Rebase Sequences

S
	s, Staging and Unstaging, Editing Rebase Sequences
	S, Staging and Unstaging
	S-<tab>, Section Visibility
	scroll-down, Commands Available in Diffs
	scroll-up, Commands Available in Diffs
	SPC, Log Buffer, Commands Available in Diffs, Blaming, Editing Rebase Sequences

T
	t, Editing Rebase Sequences, Tagging
	T, Notes
	T a, Notes
	T c, Notes
	t k, Tagging
	T m, Notes
	t p, Tagging
	T p, Notes
	t r, Tagging
	T r, Notes
	t t, Tagging
	T T, Notes
	TAB, Section Visibility

U
	u, Staging and Unstaging
	U, Staging and Unstaging

V
	v, Applying
	V, Reverting
	V A, Reverting
	V a, Reverting
	V s, Reverting
	V V, Reverting
	V v, Reverting

W
	W, Plain Patches
	w, Maildir Patches
	w a, Plain Patches, Maildir Patches
	W c, Plain Patches
	w m, Maildir Patches
	W s, Plain Patches
	w s, Maildir Patches
	w w, Maildir Patches
	with-editor-cancel, Editing Commit Messages, Editing Rebase Sequences
	with-editor-debug, Debugging Tools
	with-editor-finish, Editing Commit Messages, Editing Rebase Sequences
	with-editor-usage-message, Commit Mode and Hooks

X
	x, Editing Rebase Sequences, Resetting
	X f, Resetting
	X h, Resetting
	X i, Resetting
	X k, Resetting
	X m, Resetting
	X s, Resetting
	X w, Resetting, Wip Modes

Y
	Y, Cherries
	y, References Buffer, Editing Rebase Sequences
	y c, References Buffer
	y o, References Buffer
	y r, References Buffer
	y y, References Buffer

Z
	z, Stashing
	Z, Worktree
	z a, Stashing
	z b, Stashing
	z B, Stashing
	Z b, Worktree
	Z c, Worktree
	z f, Stashing
	Z g, Worktree
	z i, Stashing
	z I, Stashing
	z k, Stashing
	Z k, Worktree
	z l, Stashing
	Z m, Worktree
	z p, Stashing
	z v, Stashing
	z w, Stashing
	z W, Stashing
	z x, Stashing
	z z, Stashing
	z Z, Stashing

Appendix D. Function and Command Index

Index

Symbols
	!, Running Git Manually
	! !, Running Git Manually
	! a, Running Git Manually
	! b, Running Git Manually
	! g, Running Git Manually
	! k, Running Git Manually
	! p, Running Git Manually
	! s, Running Git Manually
	! S, Running Git Manually
	$, Viewing Git Output
	+, Log Buffer, Refreshing Diffs
	-, Log Buffer, Refreshing Diffs
	0, Refreshing Diffs
	1, Section Visibility
	2, Section Visibility
	3, Section Visibility
	4, Section Visibility
	:, Running Git Manually
	=, Log Buffer
	^, Section Movement

A
	a, Applying
	A, Cherry Picking
	A A, Cherry Picking
	A a, Cherry Picking
	A d, Cherry Picking
	A h, Cherry Picking
	A n, Cherry Picking
	A s, Cherry Picking
	auto-revert-buffer-list-filter, Automatic Reverting of File-Visiting Buffers
	auto-revert-interval, Automatic Reverting of File-Visiting Buffers
	auto-revert-mode, Automatic Reverting of File-Visiting Buffers
	auto-revert-stop-on-user-input, Automatic Reverting of File-Visiting Buffers
	auto-revert-use-notify, Automatic Reverting of File-Visiting Buffers
	auto-revert-verbose, Automatic Reverting of File-Visiting Buffers

B
	B, Bisecting
	b, Blaming, Branch Commands, Editing Rebase Sequences
	B B, Bisecting
	B b, Bisecting
	b b, Branch Commands
	b C, Branch Commands
	b c, Branch Commands
	B g, Bisecting
	B k, Bisecting
	b k, Branch Commands
	b l, Branch Commands
	B m, Bisecting
	b n, Branch Commands
	B r, Bisecting
	b r, Branch Commands
	B s, Bisecting
	b s, Branch Commands
	b S, Branch Commands
	b x, Branch Commands
	branch.autoSetupMerge, Branch Git Variables
	branch.autoSetupRebase, Branch Git Variables
	branch.NAME.description, Branch Git Variables
	branch.NAME.merge, Branch Git Variables
	branch.NAME.pushRemote, Branch Git Variables
	branch.NAME.rebase, Branch Git Variables
	branch.NAME.remote, Branch Git Variables
	bug-reference-mode, Commit Mode and Hooks

C
	c, Blaming, Initiating a Commit, Editing Rebase Sequences
	C, Cloning Repository
	c a, Initiating a Commit
	c A, Initiating a Commit
	C b, Cloning Repository
	C C, Cloning Repository
	c c, Initiating a Commit
	C d, Cloning Repository
	C e, Cloning Repository
	c e, Initiating a Commit
	c f, Initiating a Commit
	c F, Initiating a Commit
	C m, Cloning Repository
	C s, Cloning Repository
	c s, Initiating a Commit
	c S, Initiating a Commit
	c w, Initiating a Commit
	C-<return>, Visiting Files and Blobs from a Diff
	C-<tab>, Section Visibility
	C-c C-a, Commit Pseudo Headers
	C-c C-b, Log Buffer, Refreshing Diffs
	C-c C-c, Transient Commands, Select from Log, Editing Commit Messages, Editing Rebase Sequences
	C-c C-d, Refreshing Diffs, Editing Commit Messages
	C-c C-e, Commands Available in Diffs
	C-c C-f, Log Buffer, Refreshing Diffs
	C-c C-i, Commit Pseudo Headers
	C-c C-k, Select from Log, Editing Commit Messages, Editing Rebase Sequences
	C-c C-n, Log Buffer
	C-c C-o, Commit Pseudo Headers
	C-c C-p, Commit Pseudo Headers
	C-c C-r, Commit Pseudo Headers
	C-c C-s, Commit Pseudo Headers
	C-c C-t, Commands Available in Diffs, Commit Pseudo Headers
	C-c C-w, Using the Revision Stack
	C-c M-g, Commands for Buffers Visiting Files
	C-c M-g B, Blaming, Commands for Buffers Visiting Files
	C-c M-g b, Blaming
	C-c M-g B b, Blaming
	C-c M-g B e, Blaming
	C-c M-g B f, Blaming
	C-c M-g B r, Blaming
	C-c M-g c, Commands for Buffers Visiting Files
	C-c M-g D, Commands for Buffers Visiting Files
	C-c M-g d, Commands for Buffers Visiting Files
	C-c M-g e, Blaming, Commands for Buffers Visiting Files
	C-c M-g f, Blaming
	C-c M-g L, Commands for Buffers Visiting Files
	C-c M-g l, Commands for Buffers Visiting Files
	C-c M-g p, Commands for Buffers Visiting Files
	C-c M-g r, Blaming
	C-c M-g s, Commands for Buffers Visiting Files
	C-c M-g t, Commands for Buffers Visiting Files
	C-c M-g u, Commands for Buffers Visiting Files
	C-c M-i, Commit Pseudo Headers
	C-c M-s, Editing Commit Messages
	C-w, Common Commands
	C-x g, Status Buffer
	C-x u, Editing Rebase Sequences
	core.notesRef, Notes

D
	d, Diffing
	D, Refreshing Diffs
	d c, Diffing
	d d, Diffing
	D f, Refreshing Diffs
	D F, Refreshing Diffs
	D g, Refreshing Diffs
	d p, Diffing
	d r, Diffing
	D r, Refreshing Diffs
	d s, Diffing
	D s, Refreshing Diffs
	d t, Diffing
	D t, Refreshing Diffs
	d u, Diffing
	d w, Diffing
	D w, Refreshing Diffs
	DEL, Log Buffer, Commands Available in Diffs, Blaming, Editing Rebase Sequences

E
	e, Ediffing, Editing Rebase Sequences
	E, Ediffing
	E c, Ediffing
	E i, Ediffing
	E m, Ediffing
	E r, Ediffing
	E s, Ediffing
	E u, Ediffing
	E w, Ediffing
	E z, Ediffing

F
	f, Editing Rebase Sequences, Fetching
	F, Pulling
	f a, Fetching
	f C, Branch Commands
	F C, Branch Commands
	f e, Fetching
	F e, Pulling
	f m, Fetching
	f o, Fetching
	f p, Fetching
	F p, Pulling
	f r, Fetching
	f u, Fetching
	F u, Pulling
	forward-line, Editing Rebase Sequences

G
	g, Automatic Refreshing of Magit Buffers
	G, Automatic Refreshing of Magit Buffers
	git-commit-ack, Commit Pseudo Headers
	git-commit-cc, Commit Pseudo Headers
	git-commit-check-style-conventions, Commit Message Conventions
	git-commit-fill-column, Commit Message Conventions
	git-commit-finish-query-functions, Commit Message Conventions
	git-commit-insert-pseudo-header, Commit Pseudo Headers
	git-commit-known-pseudo-headers, Commit Pseudo Headers
	git-commit-major-mode, Commit Mode and Hooks
	git-commit-next-message, Editing Commit Messages
	git-commit-prev-message, Editing Commit Messages
	git-commit-propertize-diff, Commit Mode and Hooks
	git-commit-reported, Commit Pseudo Headers
	git-commit-review, Commit Pseudo Headers
	git-commit-save-message, Editing Commit Messages, Commit Mode and Hooks
	git-commit-setup-changelog-support, Commit Mode and Hooks
	git-commit-setup-hook, Commit Mode and Hooks
	git-commit-signoff, Commit Pseudo Headers
	git-commit-style-convention-checks, Commit Message Conventions
	git-commit-suggested, Commit Pseudo Headers
	git-commit-summary-max-length, Commit Message Conventions
	git-commit-test, Commit Pseudo Headers
	git-commit-turn-on-auto-fill, Commit Mode and Hooks
	git-commit-turn-on-flyspell, Commit Mode and Hooks
	git-rebase-auto-advance, Editing Rebase Sequences
	git-rebase-backward-line, Editing Rebase Sequences
	git-rebase-break, Editing Rebase Sequences
	git-rebase-confirm-cancel, Editing Rebase Sequences
	git-rebase-edit, Editing Rebase Sequences
	git-rebase-exec, Editing Rebase Sequences
	git-rebase-fixup, Editing Rebase Sequences
	git-rebase-insert, Editing Rebase Sequences
	git-rebase-kill-line, Editing Rebase Sequences
	git-rebase-label, Editing Rebase Sequences
	git-rebase-merge, Editing Rebase Sequences
	git-rebase-merge-toggle-editmsg, Editing Rebase Sequences
	git-rebase-move-line-down, Editing Rebase Sequences
	git-rebase-move-line-up, Editing Rebase Sequences
	git-rebase-pick, Editing Rebase Sequences
	git-rebase-reset, Editing Rebase Sequences
	git-rebase-reword, Editing Rebase Sequences
	git-rebase-show-commit, Editing Rebase Sequences
	git-rebase-show-instructions, Editing Rebase Sequences
	git-rebase-show-or-scroll-down, Editing Rebase Sequences
	git-rebase-show-or-scroll-up, Editing Rebase Sequences
	git-rebase-squash, Editing Rebase Sequences
	git-rebase-undo, Editing Rebase Sequences
	global-auto-revert-mode, Automatic Reverting of File-Visiting Buffers

H
	H, Section Types and Values

I
	I, Creating Repository
	ido-enter-magit-status, Status Buffer

J
	j, Log Buffer, Commands Available in Diffs

K
	k, Viewing Git Output, Applying, Editing Rebase Sequences, Stashing

L
	l, Logging, Editing Rebase Sequences
	L, Refreshing Logs, Log Buffer, Log Margin
	l a, Logging
	l b, Logging
	L d, Log Margin
	L g, Refreshing Logs
	l h, Logging
	l H, Reflog
	l l, Logging
	l L, Logging
	L L, Log Margin
	L l, Log Margin
	l o, Logging
	l O, Reflog
	l r, Reflog
	L s, Refreshing Logs
	L t, Refreshing Logs
	L w, Refreshing Logs

M
	m, Merging
	M, Remote Commands
	m a, Merging
	M a, Remote Commands
	M C, Remote Commands
	m e, Merging
	m i, Merging
	M k, Remote Commands
	m m, Merging
	m n, Merging
	m p, Merging
	M p, Remote Commands
	M P, Remote Commands
	M r, Remote Commands
	m s, Merging
	M u, Remote Commands
	M-1, Section Visibility
	M-2, Section Visibility
	M-3, Section Visibility
	M-4, Section Visibility
	M-<tab>, Section Visibility
	M-n, Section Movement, Editing Commit Messages, Editing Rebase Sequences
	M-p, Section Movement, Editing Commit Messages, Editing Rebase Sequences
	M-w, Blaming, Common Commands
	magit-add-section-hook, Section Hooks
	magit-after-save-refresh-status, Automatic Refreshing of Magit Buffers
	magit-am, Maildir Patches
	magit-am-abort, Maildir Patches
	magit-am-apply-maildir, Maildir Patches
	magit-am-apply-patches, Maildir Patches
	magit-am-continue, Maildir Patches
	magit-am-skip, Maildir Patches
	magit-apply, Applying
	magit-auto-revert-immediately, Automatic Reverting of File-Visiting Buffers
	magit-auto-revert-mode, Automatic Reverting of File-Visiting Buffers
	magit-auto-revert-tracked-only, Automatic Reverting of File-Visiting Buffers
	magit-bisect, Bisecting
	magit-bisect-bad, Bisecting
	magit-bisect-good, Bisecting
	magit-bisect-mark, Bisecting
	magit-bisect-reset, Bisecting
	magit-bisect-run, Bisecting
	magit-bisect-show-graph, Bisecting
	magit-bisect-skip, Bisecting
	magit-bisect-start, Bisecting
	magit-blame, Blaming, Commands for Buffers Visiting Files
	magit-blame-addition, Blaming
	magit-blame-copy-hash, Blaming
	magit-blame-cycle-style, Blaming
	magit-blame-disable-modes, Blaming
	magit-blame-echo, Blaming
	magit-blame-echo-style, Blaming
	magit-blame-goto-chunk-hook, Blaming
	magit-blame-next-chunk, Blaming
	magit-blame-next-chunk-same-commit, Blaming
	magit-blame-previous-chunk, Blaming
	magit-blame-previous-chunk-same-commit, Blaming
	magit-blame-quit, Blaming
	magit-blame-read-only, Blaming
	magit-blame-removal, Blaming
	magit-blame-reverse, Blaming
	magit-blame-styles, Blaming
	magit-blame-time-format, Blaming
	magit-blob-next, Minor Mode for Buffers Visiting Blobs
	magit-blob-previous, Commands for Buffers Visiting Files, Minor Mode for Buffers Visiting Blobs
	magit-branch, Branch Commands
	magit-branch-adjust-remote-upstream-alist, Branch Commands
	magit-branch-and-checkout, Branch Commands
	magit-branch-checkout, Branch Commands
	magit-branch-configure, Branch Commands
	magit-branch-create, Branch Commands
	magit-branch-delete, Branch Commands
	magit-branch-direct-configure, Branch Commands
	magit-branch-or-checkout, Branch Commands
	magit-branch-orphan, Branch Commands
	magit-branch-prefer-remote-upstream, Branch Commands
	magit-branch-read-upstream-first, Branch Commands
	magit-branch-rename, Branch Commands
	magit-branch-reset, Branch Commands
	magit-branch-shelve, Auxiliary Branch Commands
	magit-branch-spinoff, Branch Commands
	magit-branch-spinout, Branch Commands
	magit-branch-unshelve, Auxiliary Branch Commands
	magit-buffer-name-format, Naming Buffers
	magit-builtin-completing-read, Support for Completion Frameworks
	magit-bundle, Bundle
	magit-bury-buffer-function, Quitting Windows
	magit-call-git, Calling Git for Effect
	magit-call-process, Calling Git for Effect
	magit-cancel-section, Creating Sections
	magit-checkout, Branch Commands
	magit-cherry, Cherries
	magit-cherry-apply, Cherry Picking
	magit-cherry-copy, Cherry Picking
	magit-cherry-donate, Cherry Picking
	magit-cherry-harvest, Cherry Picking
	magit-cherry-margin, Cherries
	magit-cherry-pick, Cherry Picking
	magit-cherry-spinoff, Cherry Picking
	magit-cherry-spinout, Cherry Picking
	magit-clone, Cloning Repository
	magit-clone-always-transient, Cloning Repository
	magit-clone-bare, Cloning Repository
	magit-clone-default-directory, Cloning Repository
	magit-clone-mirror, Cloning Repository
	magit-clone-name-alist, Cloning Repository
	magit-clone-regular, Cloning Repository
	magit-clone-set-remote-head, Cloning Repository
	magit-clone-set-remote.pushDefault, Cloning Repository
	magit-clone-shallow, Cloning Repository
	magit-clone-shallow-exclude, Cloning Repository
	magit-clone-shallow-since, Cloning Repository
	magit-clone-url-format, Cloning Repository
	magit-commit, Initiating a Commit, Commands for Buffers Visiting Files
	magit-commit-amend, Initiating a Commit
	magit-commit-ask-to-stage, Initiating a Commit
	magit-commit-augment, Initiating a Commit
	magit-commit-create, Initiating a Commit
	magit-commit-diff-inhibit-same-window, Initiating a Commit
	magit-commit-extend, Initiating a Commit
	magit-commit-extend-override-date, Initiating a Commit
	magit-commit-fixup, Initiating a Commit
	magit-commit-instant-fixup, Initiating a Commit
	magit-commit-instant-squash, Initiating a Commit
	magit-commit-reword, Initiating a Commit
	magit-commit-reword-override-date, Initiating a Commit
	magit-commit-show-diff, Initiating a Commit
	magit-commit-squash, Initiating a Commit
	magit-commit-squash-confirm, Initiating a Commit
	magit-completing-read, Support for Completion Frameworks
	magit-completing-read-function, Support for Completion Frameworks
	magit-copy-buffer-revision, Common Commands
	magit-copy-section-value, Common Commands
	magit-current-section, Section Selection
	magit-cycle-margin-style, Log Margin
	magit-debug-git-executable, Git Executable, Debugging Tools
	magit-define-global-key-bindings, Default Bindings
	magit-define-section-jumper, Creating Sections
	magit-describe-section, Section Types and Values
	magit-describe-section-briefly, Section Types and Values, Matching Sections
	magit-diff, Diffing, Commands for Buffers Visiting Files
	magit-diff-adjust-tab-width, Diff Options
	magit-diff-buffer-file, Commands for Buffers Visiting Files
	magit-diff-buffer-file-locked, Commands for Buffers Visiting Files
	magit-diff-default-context, Refreshing Diffs
	magit-diff-dwim, Diffing
	magit-diff-edit-hunk-commit, Commands Available in Diffs
	magit-diff-extra-stat-arguments, Diff Options
	magit-diff-flip-revs, Refreshing Diffs
	magit-diff-hide-trailing-cr-characters, Diff Options
	magit-diff-highlight-hunk-region-functions, Diff Options
	magit-diff-highlight-indentation, Diff Options
	magit-diff-highlight-trailing, Diff Options
	magit-diff-less-context, Refreshing Diffs
	magit-diff-more-context, Refreshing Diffs
	magit-diff-paint-whitespace, Diff Options
	magit-diff-paint-whitespace-lines, Diff Options
	magit-diff-paths, Diffing
	magit-diff-range, Diffing
	magit-diff-refine-hunk, Diff Options
	magit-diff-refine-ignore-whitespace, Diff Options
	magit-diff-refresh, Refreshing Diffs
	magit-diff-save-default-arguments, Refreshing Diffs
	magit-diff-scope, Matching Sections
	magit-diff-set-default-arguments, Refreshing Diffs
	magit-diff-show-or-scroll-down, Log Buffer, Blaming
	magit-diff-show-or-scroll-up, Log Buffer, Blaming
	magit-diff-staged, Diffing
	magit-diff-switch-range-type, Refreshing Diffs
	magit-diff-toggle-file-filter, Refreshing Diffs
	magit-diff-toggle-refine-hunk, Refreshing Diffs
	magit-diff-trace-definition, Commands Available in Diffs
	magit-diff-type, Matching Sections
	magit-diff-unmarked-lines-keep-foreground, Diff Options
	magit-diff-unstaged, Diffing
	magit-diff-visit-file, Visiting Files and Blobs from a Diff
	magit-diff-visit-file-other-frame, Visiting Files and Blobs from a Diff
	magit-diff-visit-file-other-window, Visiting Files and Blobs from a Diff
	magit-diff-visit-file-worktree, Visiting Files and Blobs from a Diff
	magit-diff-visit-previous-blob, Visiting Files and Blobs from a Diff
	magit-diff-visit-worktree-file-other-frame, Visiting Files and Blobs from a Diff
	magit-diff-visit-worktree-file-other-window, Visiting Files and Blobs from a Diff
	magit-diff-while-committing, Refreshing Diffs, Editing Commit Messages
	magit-diff-working-tree, Diffing
	magit-direct-use-buffer-arguments, Transient Arguments and Buffer Variables
	magit-disable-section-inserter, Per-Repository Configuration
	magit-discard, Applying
	magit-dispatch, Transient Commands
	magit-display-buffer, Switching Buffers
	magit-display-buffer-fullcolumn-most-v1, Switching Buffers
	magit-display-buffer-fullframe-status-topleft-v1, Switching Buffers
	magit-display-buffer-fullframe-status-v1, Switching Buffers
	magit-display-buffer-function, Switching Buffers
	magit-display-buffer-noselect, Switching Buffers
	magit-display-buffer-same-window-except-diff-v1, Switching Buffers
	magit-display-buffer-traditional, Switching Buffers
	magit-display-repository-buffer, Common Commands
	magit-dwim-selection, Completion and Confirmation
	magit-ediff, Ediffing
	magit-ediff-compare, Ediffing
	magit-ediff-dwim, Ediffing
	magit-ediff-dwim-show-on-hunks, Ediffing
	magit-ediff-quit-hook, Ediffing
	magit-ediff-resolve, Ediffing
	magit-ediff-show-commit, Ediffing
	magit-ediff-show-staged, Ediffing
	magit-ediff-show-stash, Ediffing
	magit-ediff-show-stash-with-index, Ediffing
	magit-ediff-show-unstaged, Ediffing
	magit-ediff-show-working-tree, Ediffing
	magit-ediff-stage, Ediffing
	magit-edit-line-commit, Commands for Buffers Visiting Files
	magit-emacs-Q-command, Debugging Tools
	magit-fetch, Fetching
	magit-fetch-all, Fetching
	magit-fetch-branch, Fetching
	magit-fetch-from-pushremote, Fetching
	magit-fetch-from-upstream, Fetching
	magit-fetch-modules, Submodule Transient
	magit-fetch-other, Fetching
	magit-fetch-refspec, Fetching
	magit-file-checkout, Resetting, Commands for Buffers Visiting Files
	magit-file-delete, Commands for Buffers Visiting Files
	magit-file-dispatch, Commands for Buffers Visiting Files
	magit-file-rename, Commands for Buffers Visiting Files
	magit-file-untrack, Commands for Buffers Visiting Files
	magit-find-file, General-Purpose Visit Commands
	magit-find-file-other-frame, General-Purpose Visit Commands
	magit-find-file-other-window, General-Purpose Visit Commands
	magit-generate-buffer-name-default-function, Naming Buffers
	magit-generate-buffer-name-function, Naming Buffers
	magit-get-section, Matching Sections
	magit-git, Calling Git for Effect
	magit-git-command, Running Git Manually
	magit-git-command-topdir, Running Git Manually
	magit-git-debug, Viewing Git Output, Getting a Value from Git
	magit-git-executable, Git Executable
	magit-git-exit-code, Getting a Value from Git
	magit-git-failure, Getting a Value from Git
	magit-git-false, Getting a Value from Git
	magit-git-global-arguments, Global Git Arguments
	magit-git-insert, Getting a Value from Git
	magit-git-items, Getting a Value from Git
	magit-git-lines, Getting a Value from Git
	magit-git-str, Getting a Value from Git
	magit-git-string, Getting a Value from Git
	magit-git-success, Getting a Value from Git
	magit-git-true, Getting a Value from Git
	magit-git-wash, Calling Git for Effect
	magit-go-backward, Log Buffer, Refreshing Diffs
	magit-go-forward, Log Buffer, Refreshing Diffs
	magit-hunk-set-window-start, Section Movement
	magit-ido-completing-read, Support for Completion Frameworks
	magit-init, Creating Repository
	magit-insert-am-sequence, Status Sections
	magit-insert-assumed-unchanged-files, Status Sections
	magit-insert-bisect-log, Status Sections
	magit-insert-bisect-output, Status Sections
	magit-insert-bisect-rest, Status Sections
	magit-insert-diff-filter-header, Status Header Sections
	magit-insert-error-header, Status Header Sections
	magit-insert-head-branch-header, Status Header Sections
	magit-insert-heading, Creating Sections
	magit-insert-ignored-files, Status Sections
	magit-insert-local-branches, References Sections
	magit-insert-merge-log, Status Sections
	magit-insert-modules, Status Module Sections
	magit-insert-modules-overview, Status Module Sections
	magit-insert-modules-unpulled-from-pushremote, Status Module Sections
	magit-insert-modules-unpulled-from-upstream, Status Module Sections
	magit-insert-modules-unpushed-to-pushremote, Status Module Sections
	magit-insert-modules-unpushed-to-upstream, Status Module Sections
	magit-insert-push-branch-header, Status Header Sections
	magit-insert-rebase-sequence, Status Sections
	magit-insert-recent-commits, Status Sections
	magit-insert-remote-branches, References Sections
	magit-insert-remote-header, Status Header Sections
	magit-insert-repo-header, Status Header Sections
	magit-insert-section, Creating Sections
	magit-insert-sequencer-sequence, Status Sections
	magit-insert-skip-worktree-files, Status Sections
	magit-insert-staged-changes, Status Sections
	magit-insert-stashes, Status Sections
	magit-insert-status-headers, Status Header Sections
	magit-insert-tags, References Sections
	magit-insert-tags-header, Status Header Sections
	magit-insert-tracked-files, Status Sections
	magit-insert-unpulled-cherries, Status Sections
	magit-insert-unpulled-from-pushremote, Status Sections
	magit-insert-unpulled-from-upstream, Status Sections
	magit-insert-unpulled-or-recent-commits, Status Sections
	magit-insert-unpushed-cherries, Status Sections
	magit-insert-unpushed-to-pushremote, Status Sections
	magit-insert-unpushed-to-upstream, Status Sections
	magit-insert-unstaged-changes, Status Sections
	magit-insert-untracked-files, Status Sections
	magit-insert-upstream-branch-header, Status Header Sections
	magit-insert-user-header, Status Header Sections
	magit-jump-to-diffstat-or-diff, Commands Available in Diffs
	magit-keep-region-overlay, The Selection
	magit-kill-this-buffer, Minor Mode for Buffers Visiting Blobs
	magit-list-refs-sortby, Additional Completion Options
	magit-list-repositories, Repository List
	magit-list-submodules, Listing Submodules, Submodule Transient
	magit-log, Logging, Commands for Buffers Visiting Files
	magit-log-all, Logging
	magit-log-all-branches, Logging
	magit-log-auto-more, Log Buffer
	magit-log-branches, Logging
	magit-log-buffer-file, Commands for Buffers Visiting Files
	magit-log-buffer-file-locked, Commands for Buffers Visiting Files
	magit-log-bury-buffer, Log Buffer
	magit-log-current, Logging
	magit-log-double-commit-limit, Log Buffer
	magit-log-half-commit-limit, Log Buffer
	magit-log-head, Logging
	magit-log-margin, Log Margin
	magit-log-margin-show-committer-date, Log Margin
	magit-log-maybe-show-more-commits, Section Movement
	magit-log-maybe-update-blob-buffer, Section Movement
	magit-log-maybe-update-revision-buffer, Section Movement
	magit-log-move-to-parent, Log Buffer
	magit-log-move-to-revision, Log Buffer
	magit-log-other, Logging
	magit-log-refresh, Refreshing Logs, Log Buffer
	magit-log-save-default-arguments, Refreshing Logs
	magit-log-section-commit-count, Status Sections
	magit-log-select-margin, Select from Log
	magit-log-select-pick, Select from Log
	magit-log-select-quit, Select from Log
	magit-log-set-default-arguments, Refreshing Logs
	magit-log-show-refname-after-summary, Log Buffer
	magit-log-toggle-commit-limit, Log Buffer
	magit-log-trace-definition, Commands for Buffers Visiting Files
	magit-log-trace-definition-function, Commands Available in Diffs
	magit-margin-settings, Log Margin
	magit-maybe-set-dedicated, Switching Buffers
	magit-merge, Merging
	magit-merge-abort, Merging
	magit-merge-absorb, Merging
	magit-merge-editmsg, Merging
	magit-merge-into, Merging
	magit-merge-nocommit, Merging
	magit-merge-plain, Merging
	magit-merge-preview, Merging
	magit-merge-squash, Merging
	magit-mode-bury-buffer, Quitting Windows
	magit-mode-display-buffer, Refreshing Buffers
	magit-mode-quit-window, Quitting Windows
	magit-mode-setup, Refreshing Buffers
	magit-module-sections-hook, Status Module Sections
	magit-module-sections-nested, Status Module Sections
	magit-no-confirm, Action Confirmation
	magit-notes, Notes
	magit-notes-edit, Notes
	magit-notes-merge, Notes
	magit-notes-merge-abort, Notes
	magit-notes-merge-commit, Notes
	magit-notes-prune, Notes
	magit-notes-remove, Notes
	magit-patch, Plain Patches
	magit-patch-apply, Plain Patches, Maildir Patches
	magit-patch-create, Plain Patches
	magit-patch-save, Plain Patches
	magit-pop-revision-stack, Using the Revision Stack
	magit-pop-revision-stack-format, Using the Revision Stack
	magit-post-commit-hook, Initiating a Commit
	magit-post-display-buffer-hook, Switching Buffers
	magit-pre-display-buffer-hook, Switching Buffers
	magit-prefer-remote-upstream, Branch Git Variables
	magit-prefix-use-buffer-arguments, Transient Arguments and Buffer Variables
	magit-process, Viewing Git Output
	magit-process-extreme-logging, Viewing Git Output
	magit-process-file, Getting a Value from Git
	magit-process-git, Getting a Value from Git
	magit-process-kill, Viewing Git Output
	magit-process-raise-error, Calling Git for Effect
	magit-pull, Pulling
	magit-pull-branch, Pulling
	magit-pull-from-pushremote, Pulling
	magit-pull-from-upstream, Pulling
	magit-pull-or-fetch, Fetching
	magit-push, Pushing
	magit-push-current, Pushing
	magit-push-current-to-pushremote, Pushing
	magit-push-current-to-upstream, Pushing
	magit-push-implicitly, Pushing
	magit-push-matching, Pushing
	magit-push-other, Pushing
	magit-push-refspecs, Pushing
	magit-push-tag, Pushing
	magit-push-tags, Pushing
	magit-push-to-remote, Pushing
	magit-rebase, Rebasing
	magit-rebase-abort, Rebasing
	magit-rebase-autosquash, Rebasing
	magit-rebase-branch, Rebasing
	magit-rebase-continue, Rebasing
	magit-rebase-edit, Rebasing
	magit-rebase-edit-commit, Rebasing
	magit-rebase-interactive, Rebasing
	magit-rebase-onto-pushremote, Rebasing
	magit-rebase-onto-upstream, Rebasing
	magit-rebase-remove-commit, Rebasing
	magit-rebase-reword-commit, Rebasing
	magit-rebase-skip, Rebasing
	magit-rebase-subset, Rebasing
	magit-reflog-current, Reflog
	magit-reflog-head, Reflog
	magit-reflog-margin, Reflog
	magit-reflog-other, Reflog
	magit-refresh, Automatic Refreshing of Magit Buffers
	magit-refresh-all, Automatic Refreshing of Magit Buffers
	magit-refresh-args, Refreshing Buffers
	magit-refresh-buffer-hook, Automatic Refreshing of Magit Buffers
	magit-refresh-function, Refreshing Buffers
	magit-refresh-status-buffer, Automatic Refreshing of Magit Buffers
	magit-refs-filter-alist, References Buffer
	magit-refs-focus-column-width, References Buffer
	magit-refs-margin, References Buffer
	magit-refs-margin-for-tags, References Buffer
	magit-refs-pad-commit-counts, References Buffer
	magit-refs-primary-column-width, References Buffer
	magit-refs-sections-hook, References Sections
	magit-refs-set-show-commit-count, References Buffer
	magit-refs-show-commit-count, References Buffer
	magit-refs-show-remote-prefix, References Buffer
	magit-region-sections, Section Selection
	magit-region-values, Section Selection
	magit-remote, Remote Commands
	magit-remote-add, Remote Commands
	magit-remote-add-set-remote.pushDefault, Remote Commands
	magit-remote-configure, Remote Commands
	magit-remote-direct-configure, Remote Commands
	magit-remote-git-executable, Git Executable
	magit-remote-prune, Remote Commands
	magit-remote-prune-refspecs, Remote Commands
	magit-remote-remove, Remote Commands
	magit-remote-rename, Remote Commands
	magit-remote-set-url, Remote Commands
	magit-repolist-column-branch, Repository List
	magit-repolist-column-branches, Repository List
	magit-repolist-column-flag, Repository List
	magit-repolist-column-ident, Repository List
	magit-repolist-column-path, Repository List
	magit-repolist-column-stashes, Repository List
	magit-repolist-column-unpulled-from-pushremote, Repository List
	magit-repolist-column-unpulled-from-upstream, Repository List
	magit-repolist-column-unpushed-to-pushremote, Repository List
	magit-repolist-column-unpushed-to-upstream, Repository List
	magit-repolist-column-upstream, Repository List
	magit-repolist-column-version, Repository List
	magit-repolist-columns, Repository List
	magit-repository-directories, Status Buffer
	magit-reset-hard, Resetting
	magit-reset-index, Staging and Unstaging, Resetting
	magit-reset-keep, Resetting
	magit-reset-mixed, Resetting
	magit-reset-quickly, Resetting
	magit-reset-soft, Resetting
	magit-reset-worktree, Resetting, Wip Modes
	magit-restore-window-configuration, Quitting Windows
	magit-reverse, Applying
	magit-reverse-in-index, Staging and Unstaging
	magit-revert, Reverting
	magit-revert-and-commit, Reverting
	magit-revert-no-commit, Reverting
	magit-revision-filter-files-on-follow, Revision Buffer
	magit-revision-insert-related-refs, Revision Buffer
	magit-revision-show-gravatars, Revision Buffer
	magit-revision-use-hash-sections, Revision Buffer
	magit-root-section, Matching Sections
	magit-run, Running Git Manually
	magit-run-git, Calling Git for Effect
	magit-run-git-async, Calling Git for Effect
	magit-run-git-gui, Running Git Manually
	magit-run-git-with-editor, Calling Git for Effect
	magit-run-git-with-input, Calling Git for Effect
	magit-run-gitk, Running Git Manually
	magit-run-gitk-all, Running Git Manually
	magit-run-gitk-branches, Running Git Manually
	magit-save-repository-buffers, Automatic Saving of File-Visiting Buffers
	magit-save-window-configuration, Switching Buffers
	magit-section-backward, Section Movement
	magit-section-backward-siblings, Section Movement
	magit-section-cache-visibility, Section Visibility
	magit-section-case, Matching Sections
	magit-section-cycle, Section Visibility
	magit-section-cycle-diffs, Section Visibility
	magit-section-cycle-global, Section Visibility
	magit-section-forward, Section Movement
	magit-section-forward-siblings, Section Movement
	magit-section-hide, Section Visibility
	magit-section-hide-children, Section Visibility
	magit-section-ident, Matching Sections
	magit-section-initial-visibility-alist, Section Visibility
	magit-section-match, Matching Sections
	magit-section-movement-hook, Section Movement
	magit-section-set-visibility-hook, Section Visibility
	magit-section-set-window-start, Section Movement
	magit-section-show, Section Visibility
	magit-section-show-child-count, Section Options
	magit-section-show-children, Section Visibility
	magit-section-show-headings, Section Visibility
	magit-section-show-level-1, Section Visibility
	magit-section-show-level-1-all, Section Visibility
	magit-section-show-level-2, Section Visibility
	magit-section-show-level-2-all, Section Visibility
	magit-section-show-level-3, Section Visibility
	magit-section-show-level-3-all, Section Visibility
	magit-section-show-level-4, Section Visibility
	magit-section-show-level-4-all, Section Visibility
	magit-section-toggle, Section Visibility
	magit-section-toggle-children, Section Visibility
	magit-section-up, Section Movement
	magit-section-value-if, Matching Sections
	magit-section-visibility-indicator, Section Visibility
	magit-sequence-abort, Cherry Picking, Reverting
	magit-sequence-continue, Cherry Picking, Reverting
	magit-sequence-skip, Cherry Picking, Reverting
	magit-shell-command, Running Git Manually
	magit-shell-command-topdir, Running Git Manually
	magit-shell-command-verbose-prompt, Running Git Manually
	magit-show-commit, Diffing, Blaming
	magit-show-refs, References Buffer
	magit-show-refs-current, References Buffer
	magit-show-refs-head, References Buffer
	magit-show-refs-other, References Buffer
	magit-snapshot-both, Stashing
	magit-snapshot-index, Stashing
	magit-snapshot-worktree, Stashing
	magit-stage, Staging and Unstaging
	magit-stage-file, Staging from File-Visiting Buffers, Commands for Buffers Visiting Files
	magit-stage-modified, Staging and Unstaging
	magit-start-git, Calling Git for Effect
	magit-start-process, Calling Git for Effect
	magit-stash, Stashing
	magit-stash-apply, Stashing
	magit-stash-both, Stashing
	magit-stash-branch, Stashing
	magit-stash-branch-here, Stashing
	magit-stash-clear, Stashing
	magit-stash-drop, Stashing
	magit-stash-format-patch, Stashing
	magit-stash-index, Stashing
	magit-stash-keep-index, Stashing
	magit-stash-list, Stashing
	magit-stash-pop, Stashing
	magit-stash-show, Diffing, Stashing
	magit-stash-worktree, Stashing
	magit-stashes-margin, Stashing
	magit-stashes-maybe-update-stash-buffer, Section Movement
	magit-status, Status Buffer
	magit-status-headers-hook, Status Header Sections
	magit-status-margin, Status Options
	magit-status-maybe-update-blob-buffer, Section Movement
	magit-status-maybe-update-revision-buffer, Section Movement
	magit-status-maybe-update-stash-buffer, Section Movement
	magit-status-quick, Status Buffer
	magit-status-refresh-hook, Status Options
	magit-status-sections-hook, Status Sections
	magit-submodule, Submodule Transient
	magit-submodule-add, Submodule Transient
	magit-submodule-fetch, Fetching
	magit-submodule-list-columns, Listing Submodules
	magit-submodule-populate, Submodule Transient
	magit-submodule-register, Submodule Transient
	magit-submodule-synchronize, Submodule Transient
	magit-submodule-unpopulate, Submodule Transient
	magit-submodule-update, Submodule Transient
	magit-subtree, Subtree
	magit-subtree-add, Subtree
	magit-subtree-add-commit, Subtree
	magit-subtree-export, Subtree
	magit-subtree-import, Subtree
	magit-subtree-merge, Subtree
	magit-subtree-pull, Subtree
	magit-subtree-push, Subtree
	magit-subtree-split, Subtree
	magit-switch-to-repository-buffer, Common Commands
	magit-switch-to-repository-buffer-other-frame, Common Commands
	magit-switch-to-repository-buffer-other-window, Common Commands
	magit-tag, Tagging
	magit-tag-create, Tagging
	magit-tag-delete, Tagging
	magit-tag-prune, Tagging
	magit-tag-release, Tagging
	magit-this-process, Calling Git for Effect
	magit-toggle-buffer-lock, Modes and Buffers
	magit-toggle-margin, Refreshing Logs, Log Margin
	magit-toggle-margin-details, Log Margin
	magit-toggle-verbose-refresh, Debugging Tools
	magit-uniquify-buffer-names, Naming Buffers
	magit-unstage, Staging and Unstaging
	magit-unstage-all, Staging and Unstaging
	magit-unstage-committed, Staging and Unstaging
	magit-unstage-file, Staging from File-Visiting Buffers, Commands for Buffers Visiting Files
	magit-update-other-window-delay, Section Movement
	magit-version, Git Executable, Debugging Tools
	magit-visit-ref, References Buffer
	magit-visit-ref-behavior, References Buffer
	magit-wip-after-apply-mode, Legacy Wip Modes
	magit-wip-after-apply-mode-lighter, Legacy Wip Modes
	magit-wip-after-save-local-mode-lighter, Legacy Wip Modes
	magit-wip-after-save-mode, Legacy Wip Modes
	magit-wip-before-change-mode, Legacy Wip Modes
	magit-wip-before-change-mode-lighter, Legacy Wip Modes
	magit-wip-commit, Wip Modes
	magit-wip-initial-backup-mode, Legacy Wip Modes
	magit-wip-initial-backup-mode-lighter, Legacy Wip Modes
	magit-wip-log, Wip Modes
	magit-wip-log-current, Wip Modes
	magit-wip-merge-branch, Wip Graph
	magit-wip-mode, Wip Modes
	magit-wip-mode-lighter, Wip Modes
	magit-wip-namespace, Wip Modes
	magit-worktree, Worktree
	magit-worktree-branch, Worktree
	magit-worktree-checkout, Worktree
	magit-worktree-delete, Worktree
	magit-worktree-move, Worktree
	magit-worktree-status, Worktree
	MM, Editing Rebase Sequences
	Mt, Editing Rebase Sequences

N
	n, Section Movement, Blaming, Editing Rebase Sequences, Minor Mode for Buffers Visiting Blobs
	N, Blaming
	notes.displayRef, Notes

O
	o, Submodule Transient
	O, Subtree
	o a, Submodule Transient
	o d, Submodule Transient
	O e, Subtree
	O e p, Subtree
	O e s, Subtree
	o f, Submodule Transient
	O i, Subtree
	O i a, Subtree
	O i c, Subtree
	O i f, Subtree
	O i m, Subtree
	o l, Submodule Transient
	o p, Submodule Transient
	o r, Submodule Transient
	o s, Submodule Transient
	o u, Submodule Transient

P
	p, Section Movement, Blaming, Editing Rebase Sequences, Minor Mode for Buffers Visiting Blobs
	P, Blaming, Pushing
	P C, Branch Commands
	P e, Pushing
	P m, Pushing
	P o, Pushing
	P p, Pushing
	P r, Pushing
	P t, Pushing
	P T, Pushing
	P u, Pushing
	pull.rebase, Branch Git Variables

Q
	q, Quitting Windows, Log Buffer, Blaming, Minor Mode for Buffers Visiting Blobs

R
	r, Rebasing, Editing Rebase Sequences
	r a, Rebasing
	r e, Rebasing
	r f, Rebasing
	r i, Rebasing
	r k, Rebasing
	r m, Rebasing
	r p, Rebasing
	r r, Rebasing
	r s, Rebasing
	r u, Rebasing
	r w, Rebasing
	remote.NAME.fetch, Remote Git Variables
	remote.NAME.push, Remote Git Variables
	remote.NAME.pushurl, Remote Git Variables
	remote.NAME.tagOpts, Remote Git Variables
	remote.NAME.url, Remote Git Variables
	remote.pushDefault, Branch Git Variables
	RET, References Buffer, Visiting Files and Blobs from a Diff, Blaming, Editing Rebase Sequences

S
	s, Staging and Unstaging, Editing Rebase Sequences
	S, Staging and Unstaging
	S-<tab>, Section Visibility
	scroll-down, Commands Available in Diffs
	scroll-up, Commands Available in Diffs
	SPC, Log Buffer, Commands Available in Diffs, Blaming, Editing Rebase Sequences

T
	t, Editing Rebase Sequences, Tagging
	T, Notes
	T a, Notes
	T c, Notes
	t k, Tagging
	T m, Notes
	t p, Tagging
	T p, Notes
	t r, Tagging
	T r, Notes
	t t, Tagging
	T T, Notes
	TAB, Section Visibility

U
	u, Staging and Unstaging
	U, Staging and Unstaging

V
	v, Applying
	V, Reverting
	V A, Reverting
	V a, Reverting
	V s, Reverting
	V V, Reverting
	V v, Reverting

W
	W, Plain Patches
	w, Maildir Patches
	w a, Plain Patches, Maildir Patches
	W c, Plain Patches
	w m, Maildir Patches
	W s, Plain Patches
	w s, Maildir Patches
	w w, Maildir Patches
	with-editor-cancel, Editing Commit Messages, Editing Rebase Sequences
	with-editor-debug, Debugging Tools
	with-editor-finish, Editing Commit Messages, Editing Rebase Sequences
	with-editor-usage-message, Commit Mode and Hooks

X
	x, Editing Rebase Sequences, Resetting
	X f, Resetting
	X h, Resetting
	X i, Resetting
	X k, Resetting
	X m, Resetting
	X s, Resetting
	X w, Resetting, Wip Modes

Y
	Y, Cherries
	y, References Buffer, Editing Rebase Sequences
	y c, References Buffer
	y o, References Buffer
	y r, References Buffer
	y y, References Buffer

Z
	z, Stashing
	Z, Worktree
	z a, Stashing
	z b, Stashing
	z B, Stashing
	Z b, Worktree
	Z c, Worktree
	z f, Stashing
	Z g, Worktree
	z i, Stashing
	z I, Stashing
	z k, Stashing
	Z k, Worktree
	z l, Stashing
	Z m, Worktree
	z p, Stashing
	z v, Stashing
	z w, Stashing
	z W, Stashing
	z x, Stashing
	z z, Stashing
	z Z, Stashing

Appendix E. Variable Index

Index

Symbols
	!, Running Git Manually
	! !, Running Git Manually
	! a, Running Git Manually
	! b, Running Git Manually
	! g, Running Git Manually
	! k, Running Git Manually
	! p, Running Git Manually
	! s, Running Git Manually
	! S, Running Git Manually
	$, Viewing Git Output
	+, Log Buffer, Refreshing Diffs
	-, Log Buffer, Refreshing Diffs
	0, Refreshing Diffs
	1, Section Visibility
	2, Section Visibility
	3, Section Visibility
	4, Section Visibility
	:, Running Git Manually
	=, Log Buffer
	^, Section Movement

A
	a, Applying
	A, Cherry Picking
	A A, Cherry Picking
	A a, Cherry Picking
	A d, Cherry Picking
	A h, Cherry Picking
	A n, Cherry Picking
	A s, Cherry Picking
	auto-revert-buffer-list-filter, Automatic Reverting of File-Visiting Buffers
	auto-revert-interval, Automatic Reverting of File-Visiting Buffers
	auto-revert-mode, Automatic Reverting of File-Visiting Buffers
	auto-revert-stop-on-user-input, Automatic Reverting of File-Visiting Buffers
	auto-revert-use-notify, Automatic Reverting of File-Visiting Buffers
	auto-revert-verbose, Automatic Reverting of File-Visiting Buffers

B
	B, Bisecting
	b, Blaming, Branch Commands, Editing Rebase Sequences
	B B, Bisecting
	B b, Bisecting
	b b, Branch Commands
	b C, Branch Commands
	b c, Branch Commands
	B g, Bisecting
	B k, Bisecting
	b k, Branch Commands
	b l, Branch Commands
	B m, Bisecting
	b n, Branch Commands
	B r, Bisecting
	b r, Branch Commands
	B s, Bisecting
	b s, Branch Commands
	b S, Branch Commands
	b x, Branch Commands
	branch.autoSetupMerge, Branch Git Variables
	branch.autoSetupRebase, Branch Git Variables
	branch.NAME.description, Branch Git Variables
	branch.NAME.merge, Branch Git Variables
	branch.NAME.pushRemote, Branch Git Variables
	branch.NAME.rebase, Branch Git Variables
	branch.NAME.remote, Branch Git Variables
	bug-reference-mode, Commit Mode and Hooks

C
	c, Blaming, Initiating a Commit, Editing Rebase Sequences
	C, Cloning Repository
	c a, Initiating a Commit
	c A, Initiating a Commit
	C b, Cloning Repository
	C C, Cloning Repository
	c c, Initiating a Commit
	C d, Cloning Repository
	C e, Cloning Repository
	c e, Initiating a Commit
	c f, Initiating a Commit
	c F, Initiating a Commit
	C m, Cloning Repository
	C s, Cloning Repository
	c s, Initiating a Commit
	c S, Initiating a Commit
	c w, Initiating a Commit
	C-<return>, Visiting Files and Blobs from a Diff
	C-<tab>, Section Visibility
	C-c C-a, Commit Pseudo Headers
	C-c C-b, Log Buffer, Refreshing Diffs
	C-c C-c, Transient Commands, Select from Log, Editing Commit Messages, Editing Rebase Sequences
	C-c C-d, Refreshing Diffs, Editing Commit Messages
	C-c C-e, Commands Available in Diffs
	C-c C-f, Log Buffer, Refreshing Diffs
	C-c C-i, Commit Pseudo Headers
	C-c C-k, Select from Log, Editing Commit Messages, Editing Rebase Sequences
	C-c C-n, Log Buffer
	C-c C-o, Commit Pseudo Headers
	C-c C-p, Commit Pseudo Headers
	C-c C-r, Commit Pseudo Headers
	C-c C-s, Commit Pseudo Headers
	C-c C-t, Commands Available in Diffs, Commit Pseudo Headers
	C-c C-w, Using the Revision Stack
	C-c M-g, Commands for Buffers Visiting Files
	C-c M-g B, Blaming, Commands for Buffers Visiting Files
	C-c M-g b, Blaming
	C-c M-g B b, Blaming
	C-c M-g B e, Blaming
	C-c M-g B f, Blaming
	C-c M-g B r, Blaming
	C-c M-g c, Commands for Buffers Visiting Files
	C-c M-g D, Commands for Buffers Visiting Files
	C-c M-g d, Commands for Buffers Visiting Files
	C-c M-g e, Blaming, Commands for Buffers Visiting Files
	C-c M-g f, Blaming
	C-c M-g L, Commands for Buffers Visiting Files
	C-c M-g l, Commands for Buffers Visiting Files
	C-c M-g p, Commands for Buffers Visiting Files
	C-c M-g r, Blaming
	C-c M-g s, Commands for Buffers Visiting Files
	C-c M-g t, Commands for Buffers Visiting Files
	C-c M-g u, Commands for Buffers Visiting Files
	C-c M-i, Commit Pseudo Headers
	C-c M-s, Editing Commit Messages
	C-w, Common Commands
	C-x g, Status Buffer
	C-x u, Editing Rebase Sequences
	core.notesRef, Notes

D
	d, Diffing
	D, Refreshing Diffs
	d c, Diffing
	d d, Diffing
	D f, Refreshing Diffs
	D F, Refreshing Diffs
	D g, Refreshing Diffs
	d p, Diffing
	d r, Diffing
	D r, Refreshing Diffs
	d s, Diffing
	D s, Refreshing Diffs
	d t, Diffing
	D t, Refreshing Diffs
	d u, Diffing
	d w, Diffing
	D w, Refreshing Diffs
	DEL, Log Buffer, Commands Available in Diffs, Blaming, Editing Rebase Sequences

E
	e, Ediffing, Editing Rebase Sequences
	E, Ediffing
	E c, Ediffing
	E i, Ediffing
	E m, Ediffing
	E r, Ediffing
	E s, Ediffing
	E u, Ediffing
	E w, Ediffing
	E z, Ediffing

F
	f, Editing Rebase Sequences, Fetching
	F, Pulling
	f a, Fetching
	f C, Branch Commands
	F C, Branch Commands
	f e, Fetching
	F e, Pulling
	f m, Fetching
	f o, Fetching
	f p, Fetching
	F p, Pulling
	f r, Fetching
	f u, Fetching
	F u, Pulling
	forward-line, Editing Rebase Sequences

G
	g, Automatic Refreshing of Magit Buffers
	G, Automatic Refreshing of Magit Buffers
	git-commit-ack, Commit Pseudo Headers
	git-commit-cc, Commit Pseudo Headers
	git-commit-check-style-conventions, Commit Message Conventions
	git-commit-fill-column, Commit Message Conventions
	git-commit-finish-query-functions, Commit Message Conventions
	git-commit-insert-pseudo-header, Commit Pseudo Headers
	git-commit-known-pseudo-headers, Commit Pseudo Headers
	git-commit-major-mode, Commit Mode and Hooks
	git-commit-next-message, Editing Commit Messages
	git-commit-prev-message, Editing Commit Messages
	git-commit-propertize-diff, Commit Mode and Hooks
	git-commit-reported, Commit Pseudo Headers
	git-commit-review, Commit Pseudo Headers
	git-commit-save-message, Editing Commit Messages, Commit Mode and Hooks
	git-commit-setup-changelog-support, Commit Mode and Hooks
	git-commit-setup-hook, Commit Mode and Hooks
	git-commit-signoff, Commit Pseudo Headers
	git-commit-style-convention-checks, Commit Message Conventions
	git-commit-suggested, Commit Pseudo Headers
	git-commit-summary-max-length, Commit Message Conventions
	git-commit-test, Commit Pseudo Headers
	git-commit-turn-on-auto-fill, Commit Mode and Hooks
	git-commit-turn-on-flyspell, Commit Mode and Hooks
	git-rebase-auto-advance, Editing Rebase Sequences
	git-rebase-backward-line, Editing Rebase Sequences
	git-rebase-break, Editing Rebase Sequences
	git-rebase-confirm-cancel, Editing Rebase Sequences
	git-rebase-edit, Editing Rebase Sequences
	git-rebase-exec, Editing Rebase Sequences
	git-rebase-fixup, Editing Rebase Sequences
	git-rebase-insert, Editing Rebase Sequences
	git-rebase-kill-line, Editing Rebase Sequences
	git-rebase-label, Editing Rebase Sequences
	git-rebase-merge, Editing Rebase Sequences
	git-rebase-merge-toggle-editmsg, Editing Rebase Sequences
	git-rebase-move-line-down, Editing Rebase Sequences
	git-rebase-move-line-up, Editing Rebase Sequences
	git-rebase-pick, Editing Rebase Sequences
	git-rebase-reset, Editing Rebase Sequences
	git-rebase-reword, Editing Rebase Sequences
	git-rebase-show-commit, Editing Rebase Sequences
	git-rebase-show-instructions, Editing Rebase Sequences
	git-rebase-show-or-scroll-down, Editing Rebase Sequences
	git-rebase-show-or-scroll-up, Editing Rebase Sequences
	git-rebase-squash, Editing Rebase Sequences
	git-rebase-undo, Editing Rebase Sequences
	global-auto-revert-mode, Automatic Reverting of File-Visiting Buffers

H
	H, Section Types and Values

I
	I, Creating Repository
	ido-enter-magit-status, Status Buffer

J
	j, Log Buffer, Commands Available in Diffs

K
	k, Viewing Git Output, Applying, Editing Rebase Sequences, Stashing

L
	l, Logging, Editing Rebase Sequences
	L, Refreshing Logs, Log Buffer, Log Margin
	l a, Logging
	l b, Logging
	L d, Log Margin
	L g, Refreshing Logs
	l h, Logging
	l H, Reflog
	l l, Logging
	l L, Logging
	L L, Log Margin
	L l, Log Margin
	l o, Logging
	l O, Reflog
	l r, Reflog
	L s, Refreshing Logs
	L t, Refreshing Logs
	L w, Refreshing Logs

M
	m, Merging
	M, Remote Commands
	m a, Merging
	M a, Remote Commands
	M C, Remote Commands
	m e, Merging
	m i, Merging
	M k, Remote Commands
	m m, Merging
	m n, Merging
	m p, Merging
	M p, Remote Commands
	M P, Remote Commands
	M r, Remote Commands
	m s, Merging
	M u, Remote Commands
	M-1, Section Visibility
	M-2, Section Visibility
	M-3, Section Visibility
	M-4, Section Visibility
	M-<tab>, Section Visibility
	M-n, Section Movement, Editing Commit Messages, Editing Rebase Sequences
	M-p, Section Movement, Editing Commit Messages, Editing Rebase Sequences
	M-w, Blaming, Common Commands
	magit-add-section-hook, Section Hooks
	magit-after-save-refresh-status, Automatic Refreshing of Magit Buffers
	magit-am, Maildir Patches
	magit-am-abort, Maildir Patches
	magit-am-apply-maildir, Maildir Patches
	magit-am-apply-patches, Maildir Patches
	magit-am-continue, Maildir Patches
	magit-am-skip, Maildir Patches
	magit-apply, Applying
	magit-auto-revert-immediately, Automatic Reverting of File-Visiting Buffers
	magit-auto-revert-mode, Automatic Reverting of File-Visiting Buffers
	magit-auto-revert-tracked-only, Automatic Reverting of File-Visiting Buffers
	magit-bisect, Bisecting
	magit-bisect-bad, Bisecting
	magit-bisect-good, Bisecting
	magit-bisect-mark, Bisecting
	magit-bisect-reset, Bisecting
	magit-bisect-run, Bisecting
	magit-bisect-show-graph, Bisecting
	magit-bisect-skip, Bisecting
	magit-bisect-start, Bisecting
	magit-blame, Blaming, Commands for Buffers Visiting Files
	magit-blame-addition, Blaming
	magit-blame-copy-hash, Blaming
	magit-blame-cycle-style, Blaming
	magit-blame-disable-modes, Blaming
	magit-blame-echo, Blaming
	magit-blame-echo-style, Blaming
	magit-blame-goto-chunk-hook, Blaming
	magit-blame-next-chunk, Blaming
	magit-blame-next-chunk-same-commit, Blaming
	magit-blame-previous-chunk, Blaming
	magit-blame-previous-chunk-same-commit, Blaming
	magit-blame-quit, Blaming
	magit-blame-read-only, Blaming
	magit-blame-removal, Blaming
	magit-blame-reverse, Blaming
	magit-blame-styles, Blaming
	magit-blame-time-format, Blaming
	magit-blob-next, Minor Mode for Buffers Visiting Blobs
	magit-blob-previous, Commands for Buffers Visiting Files, Minor Mode for Buffers Visiting Blobs
	magit-branch, Branch Commands
	magit-branch-adjust-remote-upstream-alist, Branch Commands
	magit-branch-and-checkout, Branch Commands
	magit-branch-checkout, Branch Commands
	magit-branch-configure, Branch Commands
	magit-branch-create, Branch Commands
	magit-branch-delete, Branch Commands
	magit-branch-direct-configure, Branch Commands
	magit-branch-or-checkout, Branch Commands
	magit-branch-orphan, Branch Commands
	magit-branch-prefer-remote-upstream, Branch Commands
	magit-branch-read-upstream-first, Branch Commands
	magit-branch-rename, Branch Commands
	magit-branch-reset, Branch Commands
	magit-branch-shelve, Auxiliary Branch Commands
	magit-branch-spinoff, Branch Commands
	magit-branch-spinout, Branch Commands
	magit-branch-unshelve, Auxiliary Branch Commands
	magit-buffer-name-format, Naming Buffers
	magit-builtin-completing-read, Support for Completion Frameworks
	magit-bundle, Bundle
	magit-bury-buffer-function, Quitting Windows
	magit-call-git, Calling Git for Effect
	magit-call-process, Calling Git for Effect
	magit-cancel-section, Creating Sections
	magit-checkout, Branch Commands
	magit-cherry, Cherries
	magit-cherry-apply, Cherry Picking
	magit-cherry-copy, Cherry Picking
	magit-cherry-donate, Cherry Picking
	magit-cherry-harvest, Cherry Picking
	magit-cherry-margin, Cherries
	magit-cherry-pick, Cherry Picking
	magit-cherry-spinoff, Cherry Picking
	magit-cherry-spinout, Cherry Picking
	magit-clone, Cloning Repository
	magit-clone-always-transient, Cloning Repository
	magit-clone-bare, Cloning Repository
	magit-clone-default-directory, Cloning Repository
	magit-clone-mirror, Cloning Repository
	magit-clone-name-alist, Cloning Repository
	magit-clone-regular, Cloning Repository
	magit-clone-set-remote-head, Cloning Repository
	magit-clone-set-remote.pushDefault, Cloning Repository
	magit-clone-shallow, Cloning Repository
	magit-clone-shallow-exclude, Cloning Repository
	magit-clone-shallow-since, Cloning Repository
	magit-clone-url-format, Cloning Repository
	magit-commit, Initiating a Commit, Commands for Buffers Visiting Files
	magit-commit-amend, Initiating a Commit
	magit-commit-ask-to-stage, Initiating a Commit
	magit-commit-augment, Initiating a Commit
	magit-commit-create, Initiating a Commit
	magit-commit-diff-inhibit-same-window, Initiating a Commit
	magit-commit-extend, Initiating a Commit
	magit-commit-extend-override-date, Initiating a Commit
	magit-commit-fixup, Initiating a Commit
	magit-commit-instant-fixup, Initiating a Commit
	magit-commit-instant-squash, Initiating a Commit
	magit-commit-reword, Initiating a Commit
	magit-commit-reword-override-date, Initiating a Commit
	magit-commit-show-diff, Initiating a Commit
	magit-commit-squash, Initiating a Commit
	magit-commit-squash-confirm, Initiating a Commit
	magit-completing-read, Support for Completion Frameworks
	magit-completing-read-function, Support for Completion Frameworks
	magit-copy-buffer-revision, Common Commands
	magit-copy-section-value, Common Commands
	magit-current-section, Section Selection
	magit-cycle-margin-style, Log Margin
	magit-debug-git-executable, Git Executable, Debugging Tools
	magit-define-global-key-bindings, Default Bindings
	magit-define-section-jumper, Creating Sections
	magit-describe-section, Section Types and Values
	magit-describe-section-briefly, Section Types and Values, Matching Sections
	magit-diff, Diffing, Commands for Buffers Visiting Files
	magit-diff-adjust-tab-width, Diff Options
	magit-diff-buffer-file, Commands for Buffers Visiting Files
	magit-diff-buffer-file-locked, Commands for Buffers Visiting Files
	magit-diff-default-context, Refreshing Diffs
	magit-diff-dwim, Diffing
	magit-diff-edit-hunk-commit, Commands Available in Diffs
	magit-diff-extra-stat-arguments, Diff Options
	magit-diff-flip-revs, Refreshing Diffs
	magit-diff-hide-trailing-cr-characters, Diff Options
	magit-diff-highlight-hunk-region-functions, Diff Options
	magit-diff-highlight-indentation, Diff Options
	magit-diff-highlight-trailing, Diff Options
	magit-diff-less-context, Refreshing Diffs
	magit-diff-more-context, Refreshing Diffs
	magit-diff-paint-whitespace, Diff Options
	magit-diff-paint-whitespace-lines, Diff Options
	magit-diff-paths, Diffing
	magit-diff-range, Diffing
	magit-diff-refine-hunk, Diff Options
	magit-diff-refine-ignore-whitespace, Diff Options
	magit-diff-refresh, Refreshing Diffs
	magit-diff-save-default-arguments, Refreshing Diffs
	magit-diff-scope, Matching Sections
	magit-diff-set-default-arguments, Refreshing Diffs
	magit-diff-show-or-scroll-down, Log Buffer, Blaming
	magit-diff-show-or-scroll-up, Log Buffer, Blaming
	magit-diff-staged, Diffing
	magit-diff-switch-range-type, Refreshing Diffs
	magit-diff-toggle-file-filter, Refreshing Diffs
	magit-diff-toggle-refine-hunk, Refreshing Diffs
	magit-diff-trace-definition, Commands Available in Diffs
	magit-diff-type, Matching Sections
	magit-diff-unmarked-lines-keep-foreground, Diff Options
	magit-diff-unstaged, Diffing
	magit-diff-visit-file, Visiting Files and Blobs from a Diff
	magit-diff-visit-file-other-frame, Visiting Files and Blobs from a Diff
	magit-diff-visit-file-other-window, Visiting Files and Blobs from a Diff
	magit-diff-visit-file-worktree, Visiting Files and Blobs from a Diff
	magit-diff-visit-previous-blob, Visiting Files and Blobs from a Diff
	magit-diff-visit-worktree-file-other-frame, Visiting Files and Blobs from a Diff
	magit-diff-visit-worktree-file-other-window, Visiting Files and Blobs from a Diff
	magit-diff-while-committing, Refreshing Diffs, Editing Commit Messages
	magit-diff-working-tree, Diffing
	magit-direct-use-buffer-arguments, Transient Arguments and Buffer Variables
	magit-disable-section-inserter, Per-Repository Configuration
	magit-discard, Applying
	magit-dispatch, Transient Commands
	magit-display-buffer, Switching Buffers
	magit-display-buffer-fullcolumn-most-v1, Switching Buffers
	magit-display-buffer-fullframe-status-topleft-v1, Switching Buffers
	magit-display-buffer-fullframe-status-v1, Switching Buffers
	magit-display-buffer-function, Switching Buffers
	magit-display-buffer-noselect, Switching Buffers
	magit-display-buffer-same-window-except-diff-v1, Switching Buffers
	magit-display-buffer-traditional, Switching Buffers
	magit-display-repository-buffer, Common Commands
	magit-dwim-selection, Completion and Confirmation
	magit-ediff, Ediffing
	magit-ediff-compare, Ediffing
	magit-ediff-dwim, Ediffing
	magit-ediff-dwim-show-on-hunks, Ediffing
	magit-ediff-quit-hook, Ediffing
	magit-ediff-resolve, Ediffing
	magit-ediff-show-commit, Ediffing
	magit-ediff-show-staged, Ediffing
	magit-ediff-show-stash, Ediffing
	magit-ediff-show-stash-with-index, Ediffing
	magit-ediff-show-unstaged, Ediffing
	magit-ediff-show-working-tree, Ediffing
	magit-ediff-stage, Ediffing
	magit-edit-line-commit, Commands for Buffers Visiting Files
	magit-emacs-Q-command, Debugging Tools
	magit-fetch, Fetching
	magit-fetch-all, Fetching
	magit-fetch-branch, Fetching
	magit-fetch-from-pushremote, Fetching
	magit-fetch-from-upstream, Fetching
	magit-fetch-modules, Submodule Transient
	magit-fetch-other, Fetching
	magit-fetch-refspec, Fetching
	magit-file-checkout, Resetting, Commands for Buffers Visiting Files
	magit-file-delete, Commands for Buffers Visiting Files
	magit-file-dispatch, Commands for Buffers Visiting Files
	magit-file-rename, Commands for Buffers Visiting Files
	magit-file-untrack, Commands for Buffers Visiting Files
	magit-find-file, General-Purpose Visit Commands
	magit-find-file-other-frame, General-Purpose Visit Commands
	magit-find-file-other-window, General-Purpose Visit Commands
	magit-generate-buffer-name-default-function, Naming Buffers
	magit-generate-buffer-name-function, Naming Buffers
	magit-get-section, Matching Sections
	magit-git, Calling Git for Effect
	magit-git-command, Running Git Manually
	magit-git-command-topdir, Running Git Manually
	magit-git-debug, Viewing Git Output, Getting a Value from Git
	magit-git-executable, Git Executable
	magit-git-exit-code, Getting a Value from Git
	magit-git-failure, Getting a Value from Git
	magit-git-false, Getting a Value from Git
	magit-git-global-arguments, Global Git Arguments
	magit-git-insert, Getting a Value from Git
	magit-git-items, Getting a Value from Git
	magit-git-lines, Getting a Value from Git
	magit-git-str, Getting a Value from Git
	magit-git-string, Getting a Value from Git
	magit-git-success, Getting a Value from Git
	magit-git-true, Getting a Value from Git
	magit-git-wash, Calling Git for Effect
	magit-go-backward, Log Buffer, Refreshing Diffs
	magit-go-forward, Log Buffer, Refreshing Diffs
	magit-hunk-set-window-start, Section Movement
	magit-ido-completing-read, Support for Completion Frameworks
	magit-init, Creating Repository
	magit-insert-am-sequence, Status Sections
	magit-insert-assumed-unchanged-files, Status Sections
	magit-insert-bisect-log, Status Sections
	magit-insert-bisect-output, Status Sections
	magit-insert-bisect-rest, Status Sections
	magit-insert-diff-filter-header, Status Header Sections
	magit-insert-error-header, Status Header Sections
	magit-insert-head-branch-header, Status Header Sections
	magit-insert-heading, Creating Sections
	magit-insert-ignored-files, Status Sections
	magit-insert-local-branches, References Sections
	magit-insert-merge-log, Status Sections
	magit-insert-modules, Status Module Sections
	magit-insert-modules-overview, Status Module Sections
	magit-insert-modules-unpulled-from-pushremote, Status Module Sections
	magit-insert-modules-unpulled-from-upstream, Status Module Sections
	magit-insert-modules-unpushed-to-pushremote, Status Module Sections
	magit-insert-modules-unpushed-to-upstream, Status Module Sections
	magit-insert-push-branch-header, Status Header Sections
	magit-insert-rebase-sequence, Status Sections
	magit-insert-recent-commits, Status Sections
	magit-insert-remote-branches, References Sections
	magit-insert-remote-header, Status Header Sections
	magit-insert-repo-header, Status Header Sections
	magit-insert-section, Creating Sections
	magit-insert-sequencer-sequence, Status Sections
	magit-insert-skip-worktree-files, Status Sections
	magit-insert-staged-changes, Status Sections
	magit-insert-stashes, Status Sections
	magit-insert-status-headers, Status Header Sections
	magit-insert-tags, References Sections
	magit-insert-tags-header, Status Header Sections
	magit-insert-tracked-files, Status Sections
	magit-insert-unpulled-cherries, Status Sections
	magit-insert-unpulled-from-pushremote, Status Sections
	magit-insert-unpulled-from-upstream, Status Sections
	magit-insert-unpulled-or-recent-commits, Status Sections
	magit-insert-unpushed-cherries, Status Sections
	magit-insert-unpushed-to-pushremote, Status Sections
	magit-insert-unpushed-to-upstream, Status Sections
	magit-insert-unstaged-changes, Status Sections
	magit-insert-untracked-files, Status Sections
	magit-insert-upstream-branch-header, Status Header Sections
	magit-insert-user-header, Status Header Sections
	magit-jump-to-diffstat-or-diff, Commands Available in Diffs
	magit-keep-region-overlay, The Selection
	magit-kill-this-buffer, Minor Mode for Buffers Visiting Blobs
	magit-list-refs-sortby, Additional Completion Options
	magit-list-repositories, Repository List
	magit-list-submodules, Listing Submodules, Submodule Transient
	magit-log, Logging, Commands for Buffers Visiting Files
	magit-log-all, Logging
	magit-log-all-branches, Logging
	magit-log-auto-more, Log Buffer
	magit-log-branches, Logging
	magit-log-buffer-file, Commands for Buffers Visiting Files
	magit-log-buffer-file-locked, Commands for Buffers Visiting Files
	magit-log-bury-buffer, Log Buffer
	magit-log-current, Logging
	magit-log-double-commit-limit, Log Buffer
	magit-log-half-commit-limit, Log Buffer
	magit-log-head, Logging
	magit-log-margin, Log Margin
	magit-log-margin-show-committer-date, Log Margin
	magit-log-maybe-show-more-commits, Section Movement
	magit-log-maybe-update-blob-buffer, Section Movement
	magit-log-maybe-update-revision-buffer, Section Movement
	magit-log-move-to-parent, Log Buffer
	magit-log-move-to-revision, Log Buffer
	magit-log-other, Logging
	magit-log-refresh, Refreshing Logs, Log Buffer
	magit-log-save-default-arguments, Refreshing Logs
	magit-log-section-commit-count, Status Sections
	magit-log-select-margin, Select from Log
	magit-log-select-pick, Select from Log
	magit-log-select-quit, Select from Log
	magit-log-set-default-arguments, Refreshing Logs
	magit-log-show-refname-after-summary, Log Buffer
	magit-log-toggle-commit-limit, Log Buffer
	magit-log-trace-definition, Commands for Buffers Visiting Files
	magit-log-trace-definition-function, Commands Available in Diffs
	magit-margin-settings, Log Margin
	magit-maybe-set-dedicated, Switching Buffers
	magit-merge, Merging
	magit-merge-abort, Merging
	magit-merge-absorb, Merging
	magit-merge-editmsg, Merging
	magit-merge-into, Merging
	magit-merge-nocommit, Merging
	magit-merge-plain, Merging
	magit-merge-preview, Merging
	magit-merge-squash, Merging
	magit-mode-bury-buffer, Quitting Windows
	magit-mode-display-buffer, Refreshing Buffers
	magit-mode-quit-window, Quitting Windows
	magit-mode-setup, Refreshing Buffers
	magit-module-sections-hook, Status Module Sections
	magit-module-sections-nested, Status Module Sections
	magit-no-confirm, Action Confirmation
	magit-notes, Notes
	magit-notes-edit, Notes
	magit-notes-merge, Notes
	magit-notes-merge-abort, Notes
	magit-notes-merge-commit, Notes
	magit-notes-prune, Notes
	magit-notes-remove, Notes
	magit-patch, Plain Patches
	magit-patch-apply, Plain Patches, Maildir Patches
	magit-patch-create, Plain Patches
	magit-patch-save, Plain Patches
	magit-pop-revision-stack, Using the Revision Stack
	magit-pop-revision-stack-format, Using the Revision Stack
	magit-post-commit-hook, Initiating a Commit
	magit-post-display-buffer-hook, Switching Buffers
	magit-pre-display-buffer-hook, Switching Buffers
	magit-prefer-remote-upstream, Branch Git Variables
	magit-prefix-use-buffer-arguments, Transient Arguments and Buffer Variables
	magit-process, Viewing Git Output
	magit-process-extreme-logging, Viewing Git Output
	magit-process-file, Getting a Value from Git
	magit-process-git, Getting a Value from Git
	magit-process-kill, Viewing Git Output
	magit-process-raise-error, Calling Git for Effect
	magit-pull, Pulling
	magit-pull-branch, Pulling
	magit-pull-from-pushremote, Pulling
	magit-pull-from-upstream, Pulling
	magit-pull-or-fetch, Fetching
	magit-push, Pushing
	magit-push-current, Pushing
	magit-push-current-to-pushremote, Pushing
	magit-push-current-to-upstream, Pushing
	magit-push-implicitly, Pushing
	magit-push-matching, Pushing
	magit-push-other, Pushing
	magit-push-refspecs, Pushing
	magit-push-tag, Pushing
	magit-push-tags, Pushing
	magit-push-to-remote, Pushing
	magit-rebase, Rebasing
	magit-rebase-abort, Rebasing
	magit-rebase-autosquash, Rebasing
	magit-rebase-branch, Rebasing
	magit-rebase-continue, Rebasing
	magit-rebase-edit, Rebasing
	magit-rebase-edit-commit, Rebasing
	magit-rebase-interactive, Rebasing
	magit-rebase-onto-pushremote, Rebasing
	magit-rebase-onto-upstream, Rebasing
	magit-rebase-remove-commit, Rebasing
	magit-rebase-reword-commit, Rebasing
	magit-rebase-skip, Rebasing
	magit-rebase-subset, Rebasing
	magit-reflog-current, Reflog
	magit-reflog-head, Reflog
	magit-reflog-margin, Reflog
	magit-reflog-other, Reflog
	magit-refresh, Automatic Refreshing of Magit Buffers
	magit-refresh-all, Automatic Refreshing of Magit Buffers
	magit-refresh-args, Refreshing Buffers
	magit-refresh-buffer-hook, Automatic Refreshing of Magit Buffers
	magit-refresh-function, Refreshing Buffers
	magit-refresh-status-buffer, Automatic Refreshing of Magit Buffers
	magit-refs-filter-alist, References Buffer
	magit-refs-focus-column-width, References Buffer
	magit-refs-margin, References Buffer
	magit-refs-margin-for-tags, References Buffer
	magit-refs-pad-commit-counts, References Buffer
	magit-refs-primary-column-width, References Buffer
	magit-refs-sections-hook, References Sections
	magit-refs-set-show-commit-count, References Buffer
	magit-refs-show-commit-count, References Buffer
	magit-refs-show-remote-prefix, References Buffer
	magit-region-sections, Section Selection
	magit-region-values, Section Selection
	magit-remote, Remote Commands
	magit-remote-add, Remote Commands
	magit-remote-add-set-remote.pushDefault, Remote Commands
	magit-remote-configure, Remote Commands
	magit-remote-direct-configure, Remote Commands
	magit-remote-git-executable, Git Executable
	magit-remote-prune, Remote Commands
	magit-remote-prune-refspecs, Remote Commands
	magit-remote-remove, Remote Commands
	magit-remote-rename, Remote Commands
	magit-remote-set-url, Remote Commands
	magit-repolist-column-branch, Repository List
	magit-repolist-column-branches, Repository List
	magit-repolist-column-flag, Repository List
	magit-repolist-column-ident, Repository List
	magit-repolist-column-path, Repository List
	magit-repolist-column-stashes, Repository List
	magit-repolist-column-unpulled-from-pushremote, Repository List
	magit-repolist-column-unpulled-from-upstream, Repository List
	magit-repolist-column-unpushed-to-pushremote, Repository List
	magit-repolist-column-unpushed-to-upstream, Repository List
	magit-repolist-column-upstream, Repository List
	magit-repolist-column-version, Repository List
	magit-repolist-columns, Repository List
	magit-repository-directories, Status Buffer
	magit-reset-hard, Resetting
	magit-reset-index, Staging and Unstaging, Resetting
	magit-reset-keep, Resetting
	magit-reset-mixed, Resetting
	magit-reset-quickly, Resetting
	magit-reset-soft, Resetting
	magit-reset-worktree, Resetting, Wip Modes
	magit-restore-window-configuration, Quitting Windows
	magit-reverse, Applying
	magit-reverse-in-index, Staging and Unstaging
	magit-revert, Reverting
	magit-revert-and-commit, Reverting
	magit-revert-no-commit, Reverting
	magit-revision-filter-files-on-follow, Revision Buffer
	magit-revision-insert-related-refs, Revision Buffer
	magit-revision-show-gravatars, Revision Buffer
	magit-revision-use-hash-sections, Revision Buffer
	magit-root-section, Matching Sections
	magit-run, Running Git Manually
	magit-run-git, Calling Git for Effect
	magit-run-git-async, Calling Git for Effect
	magit-run-git-gui, Running Git Manually
	magit-run-git-with-editor, Calling Git for Effect
	magit-run-git-with-input, Calling Git for Effect
	magit-run-gitk, Running Git Manually
	magit-run-gitk-all, Running Git Manually
	magit-run-gitk-branches, Running Git Manually
	magit-save-repository-buffers, Automatic Saving of File-Visiting Buffers
	magit-save-window-configuration, Switching Buffers
	magit-section-backward, Section Movement
	magit-section-backward-siblings, Section Movement
	magit-section-cache-visibility, Section Visibility
	magit-section-case, Matching Sections
	magit-section-cycle, Section Visibility
	magit-section-cycle-diffs, Section Visibility
	magit-section-cycle-global, Section Visibility
	magit-section-forward, Section Movement
	magit-section-forward-siblings, Section Movement
	magit-section-hide, Section Visibility
	magit-section-hide-children, Section Visibility
	magit-section-ident, Matching Sections
	magit-section-initial-visibility-alist, Section Visibility
	magit-section-match, Matching Sections
	magit-section-movement-hook, Section Movement
	magit-section-set-visibility-hook, Section Visibility
	magit-section-set-window-start, Section Movement
	magit-section-show, Section Visibility
	magit-section-show-child-count, Section Options
	magit-section-show-children, Section Visibility
	magit-section-show-headings, Section Visibility
	magit-section-show-level-1, Section Visibility
	magit-section-show-level-1-all, Section Visibility
	magit-section-show-level-2, Section Visibility
	magit-section-show-level-2-all, Section Visibility
	magit-section-show-level-3, Section Visibility
	magit-section-show-level-3-all, Section Visibility
	magit-section-show-level-4, Section Visibility
	magit-section-show-level-4-all, Section Visibility
	magit-section-toggle, Section Visibility
	magit-section-toggle-children, Section Visibility
	magit-section-up, Section Movement
	magit-section-value-if, Matching Sections
	magit-section-visibility-indicator, Section Visibility
	magit-sequence-abort, Cherry Picking, Reverting
	magit-sequence-continue, Cherry Picking, Reverting
	magit-sequence-skip, Cherry Picking, Reverting
	magit-shell-command, Running Git Manually
	magit-shell-command-topdir, Running Git Manually
	magit-shell-command-verbose-prompt, Running Git Manually
	magit-show-commit, Diffing, Blaming
	magit-show-refs, References Buffer
	magit-show-refs-current, References Buffer
	magit-show-refs-head, References Buffer
	magit-show-refs-other, References Buffer
	magit-snapshot-both, Stashing
	magit-snapshot-index, Stashing
	magit-snapshot-worktree, Stashing
	magit-stage, Staging and Unstaging
	magit-stage-file, Staging from File-Visiting Buffers, Commands for Buffers Visiting Files
	magit-stage-modified, Staging and Unstaging
	magit-start-git, Calling Git for Effect
	magit-start-process, Calling Git for Effect
	magit-stash, Stashing
	magit-stash-apply, Stashing
	magit-stash-both, Stashing
	magit-stash-branch, Stashing
	magit-stash-branch-here, Stashing
	magit-stash-clear, Stashing
	magit-stash-drop, Stashing
	magit-stash-format-patch, Stashing
	magit-stash-index, Stashing
	magit-stash-keep-index, Stashing
	magit-stash-list, Stashing
	magit-stash-pop, Stashing
	magit-stash-show, Diffing, Stashing
	magit-stash-worktree, Stashing
	magit-stashes-margin, Stashing
	magit-stashes-maybe-update-stash-buffer, Section Movement
	magit-status, Status Buffer
	magit-status-headers-hook, Status Header Sections
	magit-status-margin, Status Options
	magit-status-maybe-update-blob-buffer, Section Movement
	magit-status-maybe-update-revision-buffer, Section Movement
	magit-status-maybe-update-stash-buffer, Section Movement
	magit-status-quick, Status Buffer
	magit-status-refresh-hook, Status Options
	magit-status-sections-hook, Status Sections
	magit-submodule, Submodule Transient
	magit-submodule-add, Submodule Transient
	magit-submodule-fetch, Fetching
	magit-submodule-list-columns, Listing Submodules
	magit-submodule-populate, Submodule Transient
	magit-submodule-register, Submodule Transient
	magit-submodule-synchronize, Submodule Transient
	magit-submodule-unpopulate, Submodule Transient
	magit-submodule-update, Submodule Transient
	magit-subtree, Subtree
	magit-subtree-add, Subtree
	magit-subtree-add-commit, Subtree
	magit-subtree-export, Subtree
	magit-subtree-import, Subtree
	magit-subtree-merge, Subtree
	magit-subtree-pull, Subtree
	magit-subtree-push, Subtree
	magit-subtree-split, Subtree
	magit-switch-to-repository-buffer, Common Commands
	magit-switch-to-repository-buffer-other-frame, Common Commands
	magit-switch-to-repository-buffer-other-window, Common Commands
	magit-tag, Tagging
	magit-tag-create, Tagging
	magit-tag-delete, Tagging
	magit-tag-prune, Tagging
	magit-tag-release, Tagging
	magit-this-process, Calling Git for Effect
	magit-toggle-buffer-lock, Modes and Buffers
	magit-toggle-margin, Refreshing Logs, Log Margin
	magit-toggle-margin-details, Log Margin
	magit-toggle-verbose-refresh, Debugging Tools
	magit-uniquify-buffer-names, Naming Buffers
	magit-unstage, Staging and Unstaging
	magit-unstage-all, Staging and Unstaging
	magit-unstage-committed, Staging and Unstaging
	magit-unstage-file, Staging from File-Visiting Buffers, Commands for Buffers Visiting Files
	magit-update-other-window-delay, Section Movement
	magit-version, Git Executable, Debugging Tools
	magit-visit-ref, References Buffer
	magit-visit-ref-behavior, References Buffer
	magit-wip-after-apply-mode, Legacy Wip Modes
	magit-wip-after-apply-mode-lighter, Legacy Wip Modes
	magit-wip-after-save-local-mode-lighter, Legacy Wip Modes
	magit-wip-after-save-mode, Legacy Wip Modes
	magit-wip-before-change-mode, Legacy Wip Modes
	magit-wip-before-change-mode-lighter, Legacy Wip Modes
	magit-wip-commit, Wip Modes
	magit-wip-initial-backup-mode, Legacy Wip Modes
	magit-wip-initial-backup-mode-lighter, Legacy Wip Modes
	magit-wip-log, Wip Modes
	magit-wip-log-current, Wip Modes
	magit-wip-merge-branch, Wip Graph
	magit-wip-mode, Wip Modes
	magit-wip-mode-lighter, Wip Modes
	magit-wip-namespace, Wip Modes
	magit-worktree, Worktree
	magit-worktree-branch, Worktree
	magit-worktree-checkout, Worktree
	magit-worktree-delete, Worktree
	magit-worktree-move, Worktree
	magit-worktree-status, Worktree
	MM, Editing Rebase Sequences
	Mt, Editing Rebase Sequences

N
	n, Section Movement, Blaming, Editing Rebase Sequences, Minor Mode for Buffers Visiting Blobs
	N, Blaming
	notes.displayRef, Notes

O
	o, Submodule Transient
	O, Subtree
	o a, Submodule Transient
	o d, Submodule Transient
	O e, Subtree
	O e p, Subtree
	O e s, Subtree
	o f, Submodule Transient
	O i, Subtree
	O i a, Subtree
	O i c, Subtree
	O i f, Subtree
	O i m, Subtree
	o l, Submodule Transient
	o p, Submodule Transient
	o r, Submodule Transient
	o s, Submodule Transient
	o u, Submodule Transient

P
	p, Section Movement, Blaming, Editing Rebase Sequences, Minor Mode for Buffers Visiting Blobs
	P, Blaming, Pushing
	P C, Branch Commands
	P e, Pushing
	P m, Pushing
	P o, Pushing
	P p, Pushing
	P r, Pushing
	P t, Pushing
	P T, Pushing
	P u, Pushing
	pull.rebase, Branch Git Variables

Q
	q, Quitting Windows, Log Buffer, Blaming, Minor Mode for Buffers Visiting Blobs

R
	r, Rebasing, Editing Rebase Sequences
	r a, Rebasing
	r e, Rebasing
	r f, Rebasing
	r i, Rebasing
	r k, Rebasing
	r m, Rebasing
	r p, Rebasing
	r r, Rebasing
	r s, Rebasing
	r u, Rebasing
	r w, Rebasing
	remote.NAME.fetch, Remote Git Variables
	remote.NAME.push, Remote Git Variables
	remote.NAME.pushurl, Remote Git Variables
	remote.NAME.tagOpts, Remote Git Variables
	remote.NAME.url, Remote Git Variables
	remote.pushDefault, Branch Git Variables
	RET, References Buffer, Visiting Files and Blobs from a Diff, Blaming, Editing Rebase Sequences

S
	s, Staging and Unstaging, Editing Rebase Sequences
	S, Staging and Unstaging
	S-<tab>, Section Visibility
	scroll-down, Commands Available in Diffs
	scroll-up, Commands Available in Diffs
	SPC, Log Buffer, Commands Available in Diffs, Blaming, Editing Rebase Sequences

T
	t, Editing Rebase Sequences, Tagging
	T, Notes
	T a, Notes
	T c, Notes
	t k, Tagging
	T m, Notes
	t p, Tagging
	T p, Notes
	t r, Tagging
	T r, Notes
	t t, Tagging
	T T, Notes
	TAB, Section Visibility

U
	u, Staging and Unstaging
	U, Staging and Unstaging

V
	v, Applying
	V, Reverting
	V A, Reverting
	V a, Reverting
	V s, Reverting
	V V, Reverting
	V v, Reverting

W
	W, Plain Patches
	w, Maildir Patches
	w a, Plain Patches, Maildir Patches
	W c, Plain Patches
	w m, Maildir Patches
	W s, Plain Patches
	w s, Maildir Patches
	w w, Maildir Patches
	with-editor-cancel, Editing Commit Messages, Editing Rebase Sequences
	with-editor-debug, Debugging Tools
	with-editor-finish, Editing Commit Messages, Editing Rebase Sequences
	with-editor-usage-message, Commit Mode and Hooks

X
	x, Editing Rebase Sequences, Resetting
	X f, Resetting
	X h, Resetting
	X i, Resetting
	X k, Resetting
	X m, Resetting
	X s, Resetting
	X w, Resetting, Wip Modes

Y
	Y, Cherries
	y, References Buffer, Editing Rebase Sequences
	y c, References Buffer
	y o, References Buffer
	y r, References Buffer
	y y, References Buffer

Z
	z, Stashing
	Z, Worktree
	z a, Stashing
	z b, Stashing
	z B, Stashing
	Z b, Worktree
	Z c, Worktree
	z f, Stashing
	Z g, Worktree
	z i, Stashing
	z I, Stashing
	z k, Stashing
	Z k, Worktree
	z l, Stashing
	Z m, Worktree
	z p, Stashing
	z v, Stashing
	z w, Stashing
	z W, Stashing
	z x, Stashing
	z z, Stashing
	z Z, Stashing

